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Abstract: The purpose of this paper is to compare the Gaussian approximation and

Fourier-Bessel series method for computing the CQPSK performance over frequ

selective Rician fading channels described by a one-sided exponential delay profile.

Gaussian approximation, we obtain the bit error rate(BER) in terms of a Fading Factor.

With the Fourier-Bessel method, we derive an upper bound for the BER by assumin

all path strengths are identically Rayleigh distributed. Comparisons of the results obta

in the two cases permit to investigate when the Gaussian approximation approach is a

cable and when the use of another method such as Fourier-Bessel series is require

performance resultats based on Monte Carlo simulations show the tightness of the

bound for the BER obtained with the Fourier-Bessel method.

1. INTRODUCTION

The calculation of the error performance of digital transmission systems in the pres

of intersymbol interference and noise is a longstanding problem on which considerab

tention has been focused [1], [2], [3]. For broadband PCS systems with high data rate

jor impairments are due to intersymbol interference (ISI) and to the delay spread which

impose an upper limit on the data rate and degrade system performance.

This work is concerned with a comparative study of the performance of CQPSK c

munications over Rician fading channels, as evaluated by using the Gaussian appro

tion and the Fourier-Bessel series method. We consider that the power delay pro

one-sided exponential model.

Previous analyses of BFSK and BPSK [4], [5] systems have studied the average p

bility of error in frequency-selective fading channels by using a zero-mean Gaussian
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nel model. This assumption remains valid only if the number ofISI components is large and

if they are independant and identically distributed, so that the central limit theorem ca

considered. For this case, we develop an analytical technique for the evaluation of theBER

of CQPSK communications in terms of aFading Factortaking into account the effect of

the time delay spread.

For other cases, when the number ofISI components is small and when their probabili

density function cannot be expressed in a closed form, it is necessary to compute thBER

by numerical methods.

Various methods have been proposed to compute the error probability in commu

tions engineering when the channel is not of the AWGN type. Shimbo and Celebiler [1

Prabhu [2] have shown respectively how the error probability can be expressed

Gram-Charlier series and as an Hermite series, but their computations are extreme

volved. Tighter upper and lower bounds have been obtained by Matthews [3] as functi

the interference variance, but these bounds become less effective for large signal-to

ratios.

In this paper we have adopted the Fourier-Bessel series method developed by Bird

determine an upper bound for the error probability. This method is easy to formulate m

ematically, gives a very low calculation error and converges quickly even for high value

the signal-to-noise ratio (SNR) [6], [7]. This approach was used by Bird to calculate th

probability of error for CPSK and ASK communications systems affected by Gaus

noise and cochannel interference [6]. It has also been applied to QAM sytems in the

ence of an additive Gaussian and impulsive noise [7]. This method is based on the k

edge of the characteristic function of theISI components. The single hypothesis required

that theISI components are independant random variables.

The bit error rate for the system was also evaluated through Monte Carlo simulatio

order to verify the validity of the upper bound developped with the Fourier-Bessel met

A brief outline of the paper is as follows. Section 2 describes the channel and the p

delay profile models. Details of theBERperformance evaluation using the Gaussian a

proximation and the Fourier-Bessel series method and a desciption of the simulation
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provides the conclusions.

2. SYSTEM MODEL

The channel model used in this study is similar to the model defined in [5] where

transmitted waveform is propagated through a noisy fading multipath channel. The m

path comprisesN fading paths. Each pathn (n = 0, 1, 2..N-1) is described by a strength

coefficientrn, a time delayτn and a carrier phase shiftφn introduced by the path. The receiv

er used here is the classic coherent quaternary phase-shift keying receiver. The receiv

nal r(t) can be written as [8]:

(2)

whereEs is the energy per symbol,Ts is the symbol duration,V(t) is a unit amplitude rect-

angular pulse of durationTs, fc is the carrier frequency andθi is the carrier phase. The

noise signal is assumed to be an additive, zero-mean, white Gaussian noise (AWGN

tistically independant of the multipath with spectral densityN0/2. The carrier phase shift

φn introduced by the path is uniformly distributed over [0,2π], the number of echoes fol-

lows a Poisson distribution and their arrival time is uniformly distributed [4].

For the Rician channel anLOSsignal is present, the received signal consists of: the

sired signal, the intersymbol interference and the additive Gaussian noise. We assu

usually done, that the intersymbol interference affects only adjacent data pulses, this

dition being satisfied if forτ > Ts. Under this assumption, the statistics ofr(t) de-

pend on two consecutive data symbols [Si-1, Si]. A received symbol is then affected by th

first part of its own interference and the second part of the interference generated b

previous symbol  [8]:

(3)

The power delay profile model used is the exponential profile [4] given by:

(4)
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Parameterα describes the power level implied in the delay spread model relative to

power level of the main signal component.D is the root-mean-squared (rms) delay sprea

We define the power delay profile as the average of the echoes arriving with time delτ:
p(τ) = E{ r2(τ)} [9] .

 3. EVALUATION OF THE BIT ERROR RATE

3.1  Gaussian approximation:

In the Gaussian approximation method, the evaluation of the probability of error pe

assumes that the total effect of all echoes is approximated by a Gaussian random va

[4], [5]. For analyzing theBERperformance of QPSK systems in this case, we consi

that the in-phase and the quadrature componentsX and Y outputs are uncorrelated ze

ro-mean variables with the same variance: . TheBERperformance of the system

is evaluated by assuming that the total effect of all significant echoes can be represen

a Gaussian process [9]:

(5)

whereγ = Eb/N0 represents the signal-to-noise ratio,Eb is the energy per bit andF is a

Fading Factordefined as: . In the calculations of theFading Factor, we have

taken into account the power delay profile, the average number of echoesν = E{ N} arriv-

ing in the detection interval, the parameterα and the normalized root-mean-squared del

µ = 1/ξ to obtain the following expression [9]:

(6)

3.2  Fourier-Bessel  method:

We derive in this section an expression for the bit error rate performance of CQPSK

tems using the Fourier-Bessel series expansion method developed by Bird [6]. This m

has been shown to behave well and to converge quickly even for high values of the

nal-to-noise ratio [6], [7].

Our assumptions for the Gaussian process are also valid for this method except th

intersymbol interference is considered as a sum of independant variables and that th

no closed form expression for its probability density function. But on the other han

characteristic function is known and can be simply expressed as the product of the ch

σX
2 σY

2
=

Pe erfc
γ

1 Fγ+
----------------≈

F 2σX
2

Eb⁄=

F
2αν
ξ3

---------- ξ 1–( )2 3 e
ξ– ξ 1+( )2 3+{ }–+[ ]=
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teristic function of each variable. The bit error rate in this case is bounded by the dist

tion function of the receiver in-phase or quadrature  signal:

(7)

The problem is now reduced to computing P(X < 0). Using the methodology prese

by Bird [6], the expression for the upper bound of the error probability is defined by:

(8)

whereBm=(2m-1)π/2l, Φ = ΦI . ΦG , ΦI andΦG are the intersymbol interference and th

normalized Gaussian noise characteristic functions, and 2d is the minimum distance

between two adjacent points in theQPSKconstellation.l is the maximum value of theISI

random vector; it can be expressed as in Bird [6] by .ΦG is given by:

(9)

In the calculation ofΦI, we take into account the power delay profile, the average num

of echoesν, the normalized root-mean-squared delayµ, the parameterα and the amplitude

of each echo [9].

(10)

3.3  Simulation technique:

Let β be the relative precision obtained fromM simulations to estimate the mean erro

probabilityPe. For a confidence of 0.99, one has . For a precisi

less than 2% forPe = 10-2 and a precision of 19% forPe = 10-4, we used 106 simulations.

This degree of precision is adequate considering the order of magnitude of the averag

probability to estimate [8]. We have considered that the channel’s statistics are time-in

ant over 104 symbol periods. This is a reasonable assumption for communications sys

at high data rates.

4. NUMERICAL RESULTS

Figure 1 gives the bit error rate in function ofEb/N0 for the Fourier-Bessel series and fo

the Gaussian approximation methods. The curves correspond to two sets of values, n

a first set (ν = 4, µ = 0.5,α = 0.3) and a second set (ν = 2, µ = 0.1,α = 0.2) whereν is the

Pe P X( 0 Y 0 θi π 4⁄ )=<,< 2P X 0<( ) P0=≤=

P0 1
4
π
---
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2–( )k 2k 1–( )!!

k!( )2
----------------------- x2k 1 x–( )2k+( )e

k
x
µ
---–

xd
0

1

∫ 
 
 

k 1=

K

∑
 
 
 
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average number of echoes,µ is the normalized rms delay and whereα is a parameter which

describes the power level implied in the delay spread relative to that of the main signal

ponent.

In the Gaussian approximation, the first set of values corresponds to aFading Factor F

in the order of 0.7, while the second set of values corresponds toF in the order of 0.07. For

the specific case where theFading Factoris equal to zero, the performance reduces to t

classical result forQPSK modulation in Gaussian noise.

The first set of values illustrates cases where the average number of echoesν = 4 is rel-

atively important and, withµ = 0.5, one sees that echoes of a significant power level

likely to be present for the duration of the symbol. These characteristics confer these

a somewhat gaussian-like quality. As a consequence, theBERin function ofEb/N0 evaluat-

ed with the Gaussian approximation method are nearly identical to those given by the

rier-Bessel method.

Figure 1 : Bit error rate for the Gaussian approximation and the

Fourier-Bessel method in function of Eb/N0.
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The second set of values illustrates cases where the average number of echoesν = 2 is

relatively small; with µ = 0.1, these echoes are concentrated in the first part of the sym

Figure 1 shows that, in such cases, the Gaussian approximation strongly underest

the degradation caused by theISI, as compared to the Fourier-Bessel method.

In general, the curves on Figure 1 show that the effect of the intersymbol interfer

becomes dominant as the signal-to-noise ratio becomes larger and that one tends t

an irreducble error ratePI. Figure 1 and other results obtained show that, as the normal

rms delay becomes smaller, the effect of theISI decreases and the system performance i

proves. The system performance degrades as the average number of multipath comp

ν increases. The power level implied in the delay spread relative to the power level o

main signal component, which is described byα, has a strong influence on system perfo

mance.

Figure 2 : Irreducible bit error rate with the Gaussian approximation and

the Fourier-Bessel method in function of theµ.
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Figure 2 shows the irreducible error probability per symbolPI in function of the normal-

ized rms delayµ. For pratical purposesPI is taken here as the value of the probability o

error when theEb /N0 ratio equals 40dB. One notes that, for the same value of the norm

ized rms delay, the irreducible error probability strongly depends on the parametersν and

α and that, the smaller the value of the normalized rms delay spreadµ, the better the system

performance will be. It is observed on Figure 2 that the Gaussian approximation an

Fourier-Bessel curves for the case (ν = 4, α = 0.3) start to diverge when theFading Factor

F becomes smaller than 0.6: this is consistant with the observations on other cases.

In general, the results indicate that the Gaussian process and the Fourier-Besse

method give the same performance estimates only for relatively high values of the no

ized rms delay spread, of the average number of scattering paths and of the power lev

plied in the scattering paths relative to that of the main signal component.

Figure 3 : Bit error rate for the Fourier-Bessel method and Monte Carlo

simulation results in function of Eb/N0.
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Figure 3 represents the simulation results and the upper bound of the average prob

of errorPe for QPSK system operating in multipath fading channels and Gaussian n

The curves are for the parameterα = 0.5, the normalized rms delay spreadµ = 0.1 and the

Poisson parameterν = 3. Comparing with the simulation results, the figure indicate that

upper bound of theBERis tight for small signal-to-noise ratio (SNR < 8 dB) and that, for

high SNR, the curves have a small divergence.

5. CONCLUSION:

In this study, the performance of coherentQPSKcommunication system has been ana

ysed. Expressions for the symbol error rate are derived in the context of frequency sel

Rician fading channel by using an exponential time delay spread model. The results f

bit error rate has been presented with two methods: Gaussian approximation and

er-Bessel-series.

Comparisons of the results obtained with the Fourier-Bessel series computations

those for the Gaussian approximation permit to conclude that the Gaussian approxim

is useful for the performance analysis of systems operating in a multipath environme

certain cases, for instance when theFading Factor Fis larger than 0.6. For the other case

the simple Gaussian approximation is not sufficient and it is necessary to proceed wi

more involved Fourier-Bessel performance estimation method. The simulation result

confirmed the usefulness of the Fourier-Bessel approach. It is clear also that, in ord

QPSK to be used for high data rate systems in multipath fading channels, it is necess

consider using diversity techniques, equalization, adaptative antennas. The approac

performance analysis presented here could be used in the design process of such c

systems.
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