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Abstract. Selection diversity is a simple and potentially cost-effective combining method to combat fading with
an antenna array. However, it is often assumed for true selection diversity (SD) and some of its variants that all
branches are available all the time, i.e., that the receiver chain is duplicated for all elements. This allows the
selection step to be performed after signal detection. Yet, since only one branch is used in SD at any given time
to receive the desired signal, this diversity scheme can be implemented with a single complete receiver chain,
switching means, and some simple means to measure signal power in each branch. This paper explores related
practical issues, including the incorporation of the proposed scheme in 802.11-based wireless LANs and GSM
cellular networks, and provides a performance analysis for such a selection diversity combiner implemented with
inexpensive Schottky diodes as signal power measurement devices. Since power measurements thus obtained
are noisy, the impact on performance is assessed through analysis in Rayleigh-fading environments. Performance
parameters (PDF of output SNR, average output SNR, bit error probability for any modulation scheme) are obtained
in closed-form and are compared with ideal selection diversity. It is found that performance can easily be less than
0.5 dB away from ideal selection diversity. Furthermore, the analysis is extended to include the effect of prolonged
dwell time, i.e., the minimum interval between switching cycles is longer than the channel coherence time.

Keywords: antenna arrays, array signal processing, diversity combining, selection diversity

1. Introduction

Selection diversity combining (SDC) constitutes a very simple and cost-effective strategy
to exploit an antenna array (or any other diversity source, such as the multiple rays in a
RAKE-type receiver) to combat multipath fading. In principle, a selection diversity combiner
works by selecting at all times the branch with the highest signal-to-noise ratio (SNR) for
signal reception. Hence, it requires only a single receiver chain (downconverter, demodulator,
sampler, detector, etc.) provided that adequate switching means are present.

Classical theoretical results on selection diversity assume (1) that SNR measurements
are noise-free and (2) that based on these measurements, the switch to the best branch is
instantaneous. While this is obviously analytically convenient and useful for many purposes –
including comparing diversity strategies – it does not yield a realistic performance assessment.
Indeed, it is difficult in practice to extract only the desired signal power and some degree of
noise invariably remains.

It is noteworthy that some authors have looked at the impact of switching constraints
[1, 2] which include physical switching delays and system-imposed dwell times (to avoid
information loss during switching). Both papers examine the performance degradation in
selection diversity when a given branch selection must be maintained for a certain amount of
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time while the channels are changing. In both cases, it was found that a significant degradation
is observed when the dwell time reaches 10% of the channel decorrelation time.

1.1. SDC WITH A SINGLE RECEIVER CHAIN

There seems to be a common assumption in the literature that SDC necessarily implies that
full receiver chains are present on all branches. In fact, it is often assumed that the availability
of a single receiver chain implies a simpler threshold-based “switched” diversity strategy
(such as “switch-and-stay” and “switch-and-examine”) [3–5] which brings about a significant
performance loss since these do not even attempt to select the best branch. The following
discussion provides an overview of the topic and a motivation for the implementation of true
SDC based on a single receiver chain.

It was recognized in [6] that typical power measurement devices in practical selection
combiners would yield signal-plus-noise (S + N) power instead of signal-to-noise ratio. The
performance analysis therein shows that combiners based on signal-plus-noise measurements
perform better than combiners based on the signal-to-noise ratio measure. However, this
assumes that (1) the system has full receiver chains on each branch, (2) it is capable of picking
the best branch on a symbol-by-symbol basis and (3) it selects the said branch based on S+N
measurements for the symbol to be detected. Hence, a branch has more chance of being selected
when the noise sample adds up constructively with the useful signal. However, and while such
a strategy may sometimes make sense (since it is numerically simpler than maximal ratio
combining for example), it is impossible to implement with a single receiver chain and in that
sense defeats the purpose of using selection diversity.

In the same vein, improved selection diversity strategies based on branch log-likelihood
ratios and yielding even superior performance were presented in [8]. Such strategies, which
rely on the availability of demodulated data on all branches to improve the performance of
classical SDC, have collectively become known as postdetection selection combining [6, 8–
10]. A similar approach was proposed for switched diversity under the name postdetection
switched diversity; this was thoroughly analyzed in [11, 12].

While these postdetection schemes display interesting performance improvements and
certainly have their place, they are not in general cost-effective SDC implementations from
an RF hardware point-of-view. Indeed, the cost of a receiver will almost always be dominated
by the RF portion. Current digital signal processing capability is very affordable, and its price
is continuously decreasing according to Moore’s law. RF circuitry, on the other hand, is still
relatively expensive and does not generally follow a trend similar to Moore’s law. In light
of this, a cost-effective implementation of selection diversity should be limited to a single
receiver chain. If full receiver duplication is used, then a move to a more evolved diversity
scheme (such as equal-gain combining or maximal ratio combining) is warranted, since the
added numerical complexity will in most cases not increase system cost significantly.

1.2. PAPER OUTLINE

Given the above practical motivations for restricting selection diversity to a single receiver
branch, this paper examines relevant practical receiver architectures. Unlike threshold-based
switched-diversity schemes, SDC requires a means to estimate signal power in all branches, not
just on the currently active one. This is accomplished herein via the use of Schottky-diode-based
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envelope detectors to measure signal-plus-noise power in each branch. While this is a very
low-cost device, it is an effective estimation mechanism in a white noise, i.e., interference-free,
environment. In the same spirit, low-cost PIN diodes can be employed as switching means
to select the appropriate branch to pass on to a single receiver chain. Section 2 presents the
proposed hardware architecture, discusses various trade-offs and alternatives, and shows how
such receivers could be incorporated in wireless LANs complying with the 802.11 standard.
Section 3 presents the performance analysis which includes the impact of noisy power mea-
sures, Section 4 extends the analysis to include the impact of prolonged selection dwell time,
and Section 5 presents some numerical results in uncorrelated Rayleigh fading. Throughout
the paper, SDC1 refers to ideal selection diversity and SDC2 to the proposed architectures.

2. Receiver Architecture

To take full advantage of the simplicity inherent to selection diversity, the receiver circuit
should consist of three elements: (1) a single receiver chain, (2) switching means and (3) sim-
ple power measurement devices. Since only element (3) and its associated circuitry needs
to be replicated in each branch, it is quite cost-sensitive. Therefore, only very inexpen-
sive components (e.g., Schottky diodes, directional couplers, low-noise amplifiers (LNAs),
etc.) are used. Likewise, the switching means can be constructed out of inexpensive PIN
diodes. It follows that the cost of the receiver is relatively insensitive to the number of
branches.

2.1. CIRCUIT DESCRIPTION

A block diagram of the proposed RF front-end is shown in Figure 1. Directional couplers are
used at the outputs of the LNAs in each branch to divert a tiny fraction of the incident power to
envelope detectors for the purpose of monitoring the total signal power. Based on these power
measurements, branch selection can be performed via a single pole multiple throw (SPMT)
switch. For low-cost and other practical considerations, it makes sense to construct such
switches out of PIN (positive-insulator-negative) diodes which are characterized by their fast

Figure 1. Proposed RF front-end architecture.
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Figure 2. Envelope detector circuit example.

switching time and moderate insertion loss (less than 1 dB). See [7] for a detailed description
of a PIN diode based rotary switch.

It is noteworthy that the switching transient has a duration proportional to the reciprocal
of the IF bandwidth and we can expect from one to a few of the subsequent symbols to be
corrupted by the transition from one branch to another. In fact, the relatively low transition
time of the switch induces an almost instantaneous phase/amplitude shift which, when propa-
gating through the remaining receiver stages expresses the impulse response of these cascaded
components. Taking this into account, switching can be restriced to noninformation-bearing
periods, i.e., during packet headers, tail bits and/or guard times.

2.2. THE ENVELOPE DETECTOR

A rapid overview of the envelope detector’s operation is provided here, mainly to justify
analytical assumptions made later and to establish a valid SNR operation range to support
design decisions.

Figure 2 details an envelope detector built around a low-cost Schottky diode. The small
signal approximation of the diode current for a given voltage v(t) applied at the diode is
[13]:

Id(v) = I0 + vGd + v2

2
G ′

d (1)

where Gd is the dynamic conductance of the diode and I0 is the bias current.
A modulated signal vin(t) with carrier frequency ωc is applied to the diode. Taking into

account the fact that the acquisition chain necessary to sample the output of the envelope
detector (e.g., differential amplifier, analog-to-digital converter, etc.) necessarily includes some
form of low-pass filtering, terms at ωct and 2ωct are rejected and the baseband current is given
by:

IBB(t) = I0 + G ′
d

4
[I 2(t) + Q2(t)] (2)

IBB(t) = I0 + G ′
d

4
|α(t)|2. (3)

where I (t) and Q(t) are the in-line and quadrature baseband components of vin(t).
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The voltage induced by this current across the video resistance of the detector (also the
output voltage of the detector) is

VBB(t) = K + β|α(t)|2 (4)

where β (the voltage sensitivity) and K (related to the bias current) are constant terms.
The small signal approximation typically remains valid for input powers up to −20 dBm,

i.e., the detector is in its square-law region; beyond this point, the approximation no longer
holds and a higher order model is called for. The tangential sensitivity of the detector typically
is near −55 dBm for a video bandwidth of 1 MHz. Below that threshold, the output of the
diode is submerged by thermal noise and no power measurement is available. In order to boost
the sensitivity of the envelope detectors, LNAs are placed ahead of the envelope detector in
Figure 1 (thus requiring replication across all branches). However, if the receiver is extremely
sensitive, the possibility remains that the envelope detectors will be less sensitive than the
receiver (depending on the LNA gain). Nonetheless, the practical impact is minimal since (1)
it would only affect performance (by making incorrect branch selections) when all branches
are in a deep fade, and (2) the power measurements would be unreliable in any case since they
are performed on the total signal-plus-noise power.

2.3. ALTERNATIVE ARCHITECTURE

Another approach proposed to achieve selection diversity would be to first filter and amplify
the signal from each antenna and then apply this preprocessed signal to the switch as shown in
Figure 3. With this strategy, the power monitoring for the antennas is performed sequentially
and must be completed during guard times since switching operations are now required.
Therefore, diversity branches can be scanned in sequence and the best branch selected before
information-bearing transmission is resumed. One advantage here is a further simplification
of the receiver and a higher signal monitoring sensitivity. Indeed, the signal gain at the output
of the downconverter and IF amplifiers is higher and the signal presented at the input of the
detector is more likely to exceed its tangential sensitivity point. The downside, however, is the
longer guard times required due to the additional switching.

It can be observed in Figure 3 that band filters and LNAs are replicated across all branches.
Complexity could be reduced even further by using a single band filter and LNA after the PIN
switch. This, however, decreases receiver and envelope detector sensitivities since the noise

Figure 3. A variant of the proposed RF front-end architecture.
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Figure 4. Packet structure with estimation and commutation intervals for (a) first SDC2 architecture and (b) second
SDC2 architecture.

introduced by the PIN switch is now uphill from the LNA. In light of the extreme simplicity
of the resulting receiver, this sensitivity loss may be acceptable depending on link budget and
performance goals.

It should be noted that this alternative architecture has the same hardware complexity and
roughly the same estimation/switching delay constraints as a switched diversity architecture
[4, 5] yet yields superior performance.

2.4. PACKET STRUCTURE

For such receivers to work adequately, switching activity should be restricted to guard intervals
and/or training sequences to avoid losing message symbols due to switching transients. In a
packet-oriented system, packets can often be assumed to be significantly smaller than the
channel coherence time. Thus, at most only one power estimation/switching cycle is required
per packet. This cycle requires a certain amount of time because in general it will consist of
taking a number NS of consecutive snapshots of the envelope detector’s outputs, followed by
a switching transient. This activity can be relegated to guard intervals (if they exist) between
consecutive packets, or can be performed during training preambles/midambles/postambles
since this diversity architecture does not require a training sequence.

Possible packet structures are shown in Figure 4. With the first architecture, a single
estimation/switching cycle is necessary since all envelope detectors can be sampled in parallel.
For the second architecture, N consecutive estimation/switching cycles are necessary in order
to estimate signal power for each branch in succession. It follows that a longer guard interval
is necessary, proportional to both N and NS .

2.5. INCORPORATION IN WIRELESS NETWORKS

The 802.11 standard [15] and its main derivatives (802.11a [16], 802.11b [17] and 802.11g
[18]) are characterized by a wide variety of physical layers in the 2.4 GHz unlicensed
band (802.11, 802.11b and g), the 5 GHz unlicensed band (802.11a), or the infrared band
(802.11). All these different physical layers are unified into a generic scheme known as the
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Physical Layer Convergence Protocol (PLCP). In addition, a wide range of nominal data
rates is supported, ranging from 1 Mb/s to 54 Mb/s. All 802.11 frames are prefixed by
a PLCP preamble and a PLCP header. The PLCP preamble, composed of a synchroniza-
tion sequence followed by a start frame delimiter (SFD), is of interest. Indeed, the stan-
dard explicitly states that the early portion of the sync sequence is to be used for automatic
gain control and diversity selection, while the latter portion serves for coarse frequency off-
set estimation (for OFDM-based physical layers, i.e., 802.11a) and timing synchronization.
The subsequent start frame delimiter is a 16-bit sequence that signals the beginning of the
frame.

The PLCP preamble is always transmitted at 1 Mb/s, regardless of the effective bit rate.
Furthermore, the sync sequence is relatively long: 80 bits for the frequency-hopping spread
spectrum (FHSS) variant of the base 802.11 standard (with nominal bit rates of 1 and 2 Mb/s),
128 bits for the direct-sequence spread spectrum (DSSS) of the same, 128 bits or 56 bits
for the 802.11b (up to 11 Mb/s nominal) and 802.11g (up to 54 Mbps nominal) variants.
This provides an interval of at least 56 µs to perform the estimation/commutation cycle
described above and timing synchronization. It is noteworthy that unlike other diversity ar-
chitectures, the transmitted bits need not be known for antenna selection. It is only necessary
to have the signal present, whatever it may contain, so that its energy can feed the envelope
detectors.

For 802.11a, the picture is somewhat different. Since it is an OFDM system with differ-
ent and varied estimation needs, the PLCP preamble is divided up into several specialized
sections. Its sync section is composed of 10 short OFDM symbols followed by two long
symbols. The early portion of the short symbol sequence (approximately seven symbols)
is intended for signal detection, automatic gain control (AGC) and diversity selection. The
remaining three symbols are intended for coarse frequency offset estimation and timing syn-
chronization. The two long symbols are intended for fine frequency offset estimation and
channel estimation (for equalization). The usable portion of the preamble (corresponding to
the first seven short symbols) for our estimation/commutation cycle is 7 × 0.8 µs = 5.6 µs
long.

Obviously, the proposed architectures could easily be adapted to operate in 802.11 envi-
ronments. Depending on the duration of switching transients and other design parameters, it
may however be more difficult to apply the alternative architecture of Figure 3 to systems
where the usable preamble is shorter, i.e., 802.11a. For nodes other than access points, it may
also be possible to bypass the preamble altogether and rely instead on the beacon transmitted
by the access point for estimation and antenna selection.

Likewise, the proposed architectures can be applied to digital cellular systems. Con-
sider GSM for example (by far the most widespread cellular standard); each time slot
comprises a known sequence near its middle (the so-called “midamble”) of 26 bits for
synchronization and channel estimation purposes [19]. Unlike 802.11, the full length of
the midamble may be consumed by synchronization and channel estimation for equaliza-
tion (a requirement in GSM) thus precluding the strategy presented above. However, it
is noteworthy that handsets are assigned transmission and reception time slots which are
separated in both time and frequency. They exploit the time between transmission and re-
ception to monitor a beacon signal from their home base stations and the six strongest
neighboring base stations. This, of course, serves to determine whether a handover is nec-
essary. It seems natural to use a portion of this time – say, one time slot – also for antenna
selection.
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3. Performance Analysis

3.1. IDEAL SELECTION DIVERSITY (SDC1)

If all branches are uncorrelated and have identical average powers, the analysis of the perfor-
mance of selection diversity is relatively simple and is based on order statistics [20]. Thus,
the distribution of the output SNR is

fγ (γ ) = NFN−1
x (γ ) fx (γ ), (5)

where fx (x) and Fx (x) correspond respectively to the PDF and CDF of the branch SNR and
N is the number of branches.

In Rayleigh fading with average branch SNR γ̄c, we have

fγ (γ ) = N
e− γ

γ̄c

γ̄c

(
1 − e− γ

γ̄c
)
. (6)

Another, possibly simpler, approach to this problem stems from the observation [23] that
the CDF of the selection diversity SNR, i.e., the probability that the array SNR γ is smaller than
some value γo, is equal to the probability that all the branch SNRs are smaller than γo. Hence,

Fγ (γo) = Fx (γo)N . (7)

Likewise, if the branch SNRs are correlated, we have

Fγ (γ ) = Fx1,x2,...,xN (γ, . . . , γ ), (8)

where Fx1,x2,...,xN (x1, x2, . . . , xN ) is the joint CDF of the branch SNRs. However, this joint CDF
does not have a known closed form for any N ≥ 2 for all common fading distributions. While
some authors have studied SDC with correlated branches [21, 22], resorting to numerical
integration or infinite series is often necessary and/or the study is limited to two antennas.
Therefore, derivations herein are restricted to the uncorrelated case.

3.2. ANALYTICAL FRAM EWORK FOR SDC2

The following is a worst-case analysis performance-wise since it will be assumed that a single
envelope detector snapshot is available to estimate the signal power (NS = 1). This is done
because (1) the general case of NS snapshots is analytically difficult, (2) the case NS = 1
yields an elegant and very broad result and (3) even with NS = 1, decent performance can be
obtained with minimal bandwidth consumption (guard times).

Let sn[k] be the useful signal on the nth branch and νn[k] be the noise sample on the
nth branch, both quantities being sampled at the output of the matched filter at sampling
instant t = kT where T is the symbol period. In other words, it is assumed, without loss
of generality, that the video bandwidth of the envelope detector is roughly the reciprocal of
the symbol period, i.e., it acts like an approximate matched filter. It should be noted that (1)
the effects of mismatched filtering are well-known and translate to a slight SNR loss; (2) the
video bandwidth can be reduced to integrate the energy in more than a single symbol – this
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can improve performance and/or help offset the SNR loss due to filter mismatch. However,
reducing the video bandwidth does imply a longer estimation cycle. To avoid specifying the
exact impulse response of the filtering applied to the envelope detector output (such filtering
being at least in part implicit to the detector itself), a single parameter teff will be employed
and it corresponds to the effective integration time, i.e., the time period over which the energy
of the signal is integrated if the filtering is perfectly matched to the received pulses. Hence,
teff = T for standard matched filtering.

A single Schottky signal power measurement on antenna n is given by

an = |αn|2, αn = sn + νn, (9)

where an is effectively the signal-plus-noise power and where the dependence on time t is
implicit. Recall from Equation (4) that the output voltage VBB of the detector includes a bias K
and a gain β. Without loss of generality, it is assumed here that the effect of these parameters
is adequately compensated, i.e., an = VBB−K

β
.

Given the matched filter assumption and further assuming (without loss of generality)
antipodal modulation (e.g., BPSK or QPSK), we have

σ 2
s

σ 2
ν

= 2Eb

N0
, (10)

where Eb is the bit energy and N0
2 is the two-sided noise power spectral density.

Alternatively, if the effective integration period teff of the envelope detector’s implicit filter
is longer than 1 symbol, we have

σ 2
s

σ 2
ν

= 2teff Es

T N0
= 2κ Es

N0
, (11)

where κ = teff
T . It can be observed that the filtering has the effect of reducing the relative noise

power by a factor of κ .
Therefore, the instantaneous signal-to-noise ratio of branch n is

γn = |sn|2
κσ 2

ν

= |αn − νn|2
κσ 2

ν

, (12)

where κσ 2
ν = σ 2

n is the noise power. In other words, the signal-to-noise ratio at the output of
the envelope detector is κ times stronger (thanks to integration over many symbols) than the
signal-to-noise ratio for signal demodulation.

It follows that the signal-to-noise ratio at the output of the combiner can be expressed

γ =
N∑

n=1

γn

N∏

k=1
k �=n

u(an − ak) =
N∑

n=1

|αn − νn|2
κσ 2

ν

N∏

k=1
k �=n

u(an − ak), (13)

where

u(x) =
{

0, x < 0,

1, x ≥ 0,
(14)
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is the Heaviside step function.
If N = 2, we have

γ = u(a1 − a2)γ1 + u(a2 − a1)γ2. (15)

It follows that the distribution of γ conditioned on a1 and a2 is given by

fγ |a1,a2 (γ | a1, a2) = u(a1 − a2) fγ1|a1 (γ | a1) + u(a2 − a1) fγ2|a2 (γ | a2). (16)

Hence, we have

fγ (γ ) =
∫ ∞

0

∫ ∞

0
fγ |a1,a2 (γ | a1, a2) fa1 (a1) fa2 (a2) da1da2. (17)

3.3. RAYLEIGH FADING

Given the vector of random variables xT
n = [αn, sn], its correlation matrix is given by

Rxx =
[

σ 2
s + σ 2

ν σ 2
s

σ 2
s σ 2

s

]
, (18)

where σ 2
s is the average useful signal power.

It follows, by virtue of theorem 1.2.11 in [24] that the density of sn conditioned on αn is
Gaussian, with a mean of αn

σ 2
s

σ 2
s +σ 2

ν
and a variance of σ 2

ν ( σ 2
s

σ 2
ν +σ 2

s
).

From (12) and given that an = |αn|2, we have

fγn |an (γn | an) = κ
(
σ 2

s + σ 2
ν

)

σ 2
s

e
− an

σ2
ν

(
σ2

s
σ2

s +σ2
ν

)

0F1

(
1;

γnκan

σ 2
ν

)
e
−κγn

σ2
s +σ2

ν

σ2
s , (19)

which is a scaled 2-degrees-of-freedom noncentral chi-square distribution.
It is useful to observe that, in substituting (16) into (17), both terms of (16) will yield

the same result after integration, provided that fγ1|a1 (γ1 | a1) = fγ2 | a2 (γ2 | a2) (a1 and a2

simply exchange roles in the two integrals). Therefore, it suffices to solve the alternate
form

fγ (γ ) = 2
κσ 2

a

σ 2
s

∫ ∞

0

∫ ∞

0
u(a1 − a2)e

− a1
σ2
ν

σ2
s

σ2
a 0F1

(
1;

γ κa1

σ 2
ν

)

×e
−γ κ

σ2
a

σ2
s fa1 (a1) fa2 (a2) da1da2, (20)

where σ 2
a = σ 2

s +σ 2
ν and the step function can be removed by imposing appropriate integration

bounds to yield

fγ (γ ) = 2
κσ 2

a

σ 2
s

∫ ∞

0

∫ a1

0
e
− a1

σ2
ν

σ2
s

σ2
a 0F1

(
1;

γ κa1

σ 2
ν

)
e
−γ κ

σ2
a

σ2
s fa1 (a1) fa2 (a2) da2da1, (21)
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If the fading is Rayleigh with variance σ 2
s on all branches, and the fading process is

uncorrelated across the array, we have

fa1 (x) = fa2 (x) = e−x/σ 2
a

σ 2
a

. (22)

Substituting in (21) and integrating over a2, we get

fγ (γ ) = 2
κ

σ 2
s

∫ ∞

0

(
1 − e

− a1
σ2

a

)
e
−a1

(
1

σ2
a

+ σ2
s

σ2
ν σ2

a

)

e
−γ κ

σ2
a

σ2
s 0F1

(
1,

γ κa1

σ 2
ν

)
da1, (23)

which can, in turn, be integrated term-by-term by virtue of Lemma 1.3.3 in [24] to yield

fγ (γ ) = 2κσ 2
a σ 2

ν

σ 2
ν σ 2

s + σ 4
s

1F1

(
1; 1; γ

κσ 2
a

σ 2
ν + σ 2

s

)
e
−γ κ

σ2
a

σ2
s

− 2κσ 2
a σ 2

ν

2σ 2
ν σ 2

s + σ 4
s

1F1

(
1; 1; γ

κσ 2
a

2σ 2
ν + σ 2

s

)
e
−γ κ

σ2
a

σ2
s , (24)

where 1F1(a; b; x) is the confluent hypergeometric function. The latter has the property1

1F1(q; q; x) = ex , (25)

which, applied to (24) yields

fγ (γ ) = 2κσ 2
a σ 2

ν

σ 2
ν σ 2

s + σ 4
s

e
−γ κ

σ2
a σ2

ν

σ2
ν σ2

s +σ4
s − 2κσ 2

a σ 2
ν

2σ 2
ν σ 2

s + σ 4
s

e
−γ κ

2σ2
a σ2

ν

2σ2
ν σ2

s +σ4
s . (26)

Likewise, it is straightforward to show (applying the same term-by-term integration tech-
nique) that the general solution for arbitrary N is

fγ (γ )(SDC2) = N
N−1∑

n=0

(
N − 1

n

)
(−1)n κσ 2

a σ 2
ν

(n + 1)σ 2
ν σ 2

s + σ 4
s

e
−γ κ

(n+1)σ2
a σ2

ν

(n+1)σ2
ν σ2

s +σ4
s . (27)

The above has a form which is very close to the PDF for SDC1 if the polynomial in (6) is
expanded according to the binomial theorem, i.e.,

fγ (γ )(SDC1) = N

γ̄c

N−1∑

n=0

(
N − 1

n

)
(−1)ne−γ n+1

γ̄c . (28)

The simplicity of the forms above for fγ (γ )(SDC1) and fγ (γ )(SDC2) is exploited throughout
the paper to obtain various performance parameters through term-by-term integration.

1 This property is obvious when expanding 1F1 into its power series representation; however, see also [25,
7.11.1–4].
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3.4. AVERAGE SNR

It is simple to show, through term-by-term integration of (28), that the average SNR at the
output of a classical selection diversity combiner is

γ̄ (SDC1) = N γ̄c

N−1∑

n=0

(
N − 1

n

)
(−1)n

(n + 1)2
. (29)

However, it is shown in Appendix A that the above can be manipulated to reduce to the
classical result [23]

γ̄ (SDC1) = γ̄c

N∑

n=1

1

n
. (30)

Likewise, simple term-by-term integration of (27) times γ gives the average SNR of the
proposed selection diversity architecture:

γ̄ (SDC2) = N
N−1∑

n=0

(
N − 1

n

)
(−1)n (n + 1)σ 2

s σ 2
ν + σ 4

s

(n + 1)2κσ 2
ν σ 2

a

. (31)

Appendix B shows that the above can be reformulated as follows:

γ̄ (SDC2) = σ 2
s σ 2

ν

κσ 2
ν σ 2

a

+ σ 2
s γ̄c

σ 2
a

N∑

n=1

1

n
(32)

= C1 + C2γ̄
(SDC1), (33)

where it can be verified, as could be expected, that C2 is always smaller than 1.

3.5. BIT ERROR PROBABILITY

It is noteworthy that the general result (27) for the density of the output SNR can be expressed
as follows:

fγ (γ ) = N
N−1∑

n=0

(
N − 1

n

)
(−1)n

1 + n
gγ0

(
γ,

(n + 1)σ 2
ν σ 2

s + σ 4
s

(n + 1)κσ 2
a σ 2

ν

)
, (34)

where

gγ0 (γ, γ̄c) = e− γ0
γ̄c

γ̄c
, (35)

which is a 2 degrees-of-freedom scaled central chi-square distribution and it corresponds to the
ideal SNR at the output of a single branch receiver operating in a Rayleigh-fading environment
with an average SNR of γ̄c.

It follows that the output SNR distribution (34) can be assimilated to a linear mixture of
the output SNRs of N − 1 ideal single-branch receivers. Likewise, the bit error probability
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(BEP) for any modulation scheme is the same linear mixture of bit error probabilities for the
corresponding ideal single branch receivers, i.e.,

P (SDC2)
2 = N

N−1∑

n=0

(
N − 1

n

)
(−1)n

1 + n
P2

(
(n + 1)σ 2

ν σ 2
s + σ 4

s

(n + 1)κσ 2
a σ 2

ν

)
, (36)

where P2(γ̄c) is the corresponding BEP for a single-branch receiver averaged over Rayleigh
fading with a mean SNR of γ̄c.

This is convenient because bit error probabilities P2 in Rayleigh fading are well-known
for virtually any modulation scheme and can be directly substituted in (36). For example, it is
known that [26]

P (DPSK)
2 (γ̄c) = 1

2

1

1 + γ̄c
. (37)

The above, when substituted in (36), yields

P (SDC2,DPSK)
2 = N

2

N−1∑

n=0

(
N − 1

n

)
(−1)n

1 + n

κ(n + 1)σ 2
a σ 2

ν

(n + 1)σ 2
ν

(
κσ 2

a + σ 2
s

) + σ 4
s

. (38)

An alternate form for (38) is given later which is more convenient for numerical evaluation
(see Section 4 and Appendix D).

Similar expressions can be found for other modulation schemes using the same approach.
Also, it is easy to show (see Appendix C) that the BEP for classical selection diversity com-
bining is

P (SDC1)
2 = N

N−1∑

n=0

(
N − 1

n

)
(−1)n

n + 1
P2

(
γ̄c

n + 1

)
, (39)

from which expressions can be derived for any modulation scheme as was done for SDC2.

3.6. OUTAGE PROBABILITY

It is well-known that the average BEP can in some circumstances be a misleading performance
parameter, since the average picture provides no indication as to the severity and frequency of
occurrence of performance drops. For this reason, it is of interest to study outage probability
which is defined simply as the probability that performance will drop below a predefined
threshold (the outage point).

If the outage point is situated at γ = γo, we have

Pout (γo) = P(γ < γo) = Fγ (γo) =
∫ γo

0
fγ (γ ) dγ. (40)

Since, in a white noise environment, the relation between the BEP and Pout is monotonic,
the above definition remains valid if the outage point is defined in terms of the average BEP.
It suffices to find a γo such that

Peo = Pe(γo), (41)
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where Peo is the outage point defined in terms of the average BEP and Pe(γ ) is the BEP as a
function of instantaneous SNR γ .

In Rayleigh-fading, the outage probability for SDC2 can be obtained by substituting (27)
in (40) and performing term-by-term integration.

Thus, we obtain

Pout (γo) = P(γ < γo) = N
N−1∑

n=0

(
N − 1

n

)
(−1)n

n + 1

(
1 − e

−γoκ
σ2

a σ2
ν (n+1)

(n+1)σ2
ν σ2

s +σ4
s

)
. (42)

For ideal selection diversity, the outage probability is given by (7).

4. Performance as a Function of Dwell Time

We now examine the impact of relaxing the coherence time constraint. In other words, it is
assumed that the packet structure detailed in Section 2.4 is maintained, but that packet lengths
are not necessarily shorter than the channel coherence time. This implies that a given branch
selection has to be maintained beyond the point in time where it is still an optimal choice.

The degradation in performance due to dwell time was studied in [1, 2], but it is presented
here in conjunction with imperfect SNR estimation and the approach therefore differs.

We wish to find the distribution of the output SNR γ as a function of the delay τ (dwell
time) since the last estimation/commutation cycle. At τ = 0, the PDF is given by (27). When
τ is sufficiently large to ensure complete channel decorrelation with respect to τ = 0, the
system performance reduces to that of a single-antenna receiver, and we have

fγ (γ ) = e− γ

γ̄c

γ̄c
, (43)

where the average channel SNR γ̄c = σ 2
s

κσ 2
ν
.

Without loss of generality, it is assumed that the channel autocorrelation function is based
on the Jakes fading spectrum [28] (isotropic scattering assumption), i.e.,

R(τ ) = Rxx (τ ) = Ryy(τ ) = J0

(
2πvτ

λ

)
, (44)

where x and y are the orthogonal components of the complex channel gain and v is the speed
of the receiver with respect to the transmitter.

Furthermore, the PDF (27) is actually a sum of exponential subdistributions. These can be
individually considered as the SNR PDF associated with a complex Gaussian channel gain.
Observing one such channel gain over time, its variance will slowly reduce to γ̄c as channel
decorrelation is achieved.

It follows that the complex gaussian variance as a function of τ for subdistribution n is
given by

σ 2(τ ) = R2(τ )
(n + 1)σ 2

ν σ 2
s + σ 4

s

(n + 1)κσ 2
a σ 2

ν

+ (1 − R2(τ ))
σ 2

s

κσ 2
ν

. (45)
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Hence, we have

fγ (τ )(γ (τ )) = N
N−1∑

n=0

(
N − 1

n

)
(−1)nκσ 2

a σ 2
ν

(n + 1)σ 2
ν σ 2

s + (1 − R2(τ ))nσ 4
s + σ 4

s

×e
−γ (τ )κ (n+1)κσ2

a σ2
ν

(n+1)σ2
ν σ2

s +(1−R2(τ ))nσ4
s +σ4

s , (46)

and it can be verified that the above reduces to (27) when R(τ ) = 1, and reduces to (43) when
R(τ ) = 0. The latter is true since

N
N−1∑

n=0

(
N − 1

n

)
(−1)n

n + 1
=

N−1∑

n=0

(
N

n + 1

)
(−1)n =

N∑

k=1

(
N

k

)
(−1)k−1

= −
N∑

k=0

(
N

k

)
(−1)k + 1 = (1 − 1)N + 1 = 1.

It follows that (36) can be generalized to become

P (SDC2)
2 (τ ) = N

N−1∑

n=0

(
N − 1

n

)
(−1)n

1 + n
P2

(
(n + 1)σ 2

ν σ 2
s + (1 − R2(τ ))nσ 4

s + σ 4
s

(n + 1)κσ 2
a σ 2

ν

)
. (47)

Like many other results in this paper, the above is in the form of an alternate sum. Such
forms are notoriously difficult to evaluate numerically and Appendix D shows that (47) can
be rewritten as follows in the DPSK case:

P (SDC2,DPSK)
2 (τ ) = N !κσ 2

a

2
(
κσ 2

a + σ 2
s

)
�

(
(κσ 2

a +σ 2
s )+σ 4

s /σ 2
ν

κσ 2
a +σ 2

s +(1−R2(τ ))σ 4
s /σ 2

ν
+ 1

)

�
(

(κσ 2
a +σ 2

s )+σ 4
s /σ 2

ν

κσ 2
a +σ 2

s +2(1−R2(τ ))σ 4
s /σ 2

ν
+ N

) . (48)

Finally, the average bit error rate for a packet is given by

P̄2 =
∫ τp

0
P2(τ ) dτ, (49)

where τp is the packet duration.

5. Numerical Results

Figure 5 compares the outage probability of SDC1 and SDC2 for 2, 4, 8 and 25 antenna
elements. The outage point is defined as the probability that the instantaneous BEP is smaller
than 10−3 when coherent QPSK is employed.

Figure 6 shows the BEP as a function of the same set of parameters for DPSK. It can be
observed that the gap between SDC1 and SDC2 with κ = 1 is slightly larger in general for
DPSK than for coherent QPSK.

Figure 7 shows the average BEP performance P̄2 as a function of the normalized delay,
i.e., delay τ times the fading bandwidth B f for 2, 4, 8 and 25 antennas, branch input SNRs
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Figure 5. Outage probability with the outage point defined by the probability P(Pe < 10−3) when coherent QPSK
is employed.

Figure 6. Bit error probability for various array sizes and values of κ when DPSK is employed.

ranging from 0 to 40 dBs, and κ = 1, 2, 5 and ∞ (i.e., SDC1). For the Jakes fading spectrum,
B f = v

λ
. Results are consistent with those reported in [1, 2] and show an increased sensitivity

to the dwell time as the number of antennas augments. The impact of different magnitudes of
estimation error, however, does not affect the said sensitivity.
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Figure 7. Average BEP performance as a function of normalized packet duration (duration τp times the fading
bandwidth B f ) for N = 2, 4, 8 and 25 antennas for various branch SNRs.

6. Conclusion

A simple architecture for a selection diversity combiner was presented. Based on switching
means and inexpensive Schottky-diode based envelope detectors, it requires only a single
complete downconversion/reception chain and thus minimizes component replication. An
analytical framework was provided characterizing the performance of such an architecture,
where the power measurements are performed on the overall signal-plus-noise envelope. A
discussion was provided illustrating how such a scheme could be applied to existing wireless
networks including 802.11 wireless LANs and GSM cellular networks. Numerical results have
shown that performance is very near to the ideal, classical selection diversity scheme when the
SNR is sufficiently high. It can in fact be made arbitrarily close to the ideal selection diversity
performance by altering the envelope detector’s bandwidth, at the possible cost of a longer
estimation interval.

Closed-form expressions for the average bit error probability (for DPSK), the outage prob-
ability, and the average SNR have been derived for SDC2 in Rayleigh fading, in addition to the
PDF of the output SNR γ . The parameter κ corresponds to the temporal length of the envelope
detector filtering and thus indicates the amount of effective estimation noise.

It is of interest that the average SNR, average BEP and outage probability results can be
expressed as finite sums of the same parameter for single-branch receivers. Thus, well-known
classical results for any common modulation scheme can be exploited, making such results
very broad, provided that uncorrelated Rayleigh fading is assumed.
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The performance penalty versus ideal SDC is less than 1 dB in terms of average BEP with
DPSK modulation and κ = 5. As could be expected, the performance gap grows with the
number of antennas. It also seems to grow faster for outage probability than for average BEP.
Finally, analysis of the combined impact of prolonged dwell time and estimation error, as well
as associated numerical results, corroborates the results of [1, 2] and shows clearly that the
two effects are largely independent.

Appendix A

Given

γ̄ (SDC1) = N γ̄c

N−1∑

n=0

(
N − 1

n

)
(−1)n

(n + 1)2
= γ̄c

N−1∑

n=0

(
N

n + 1

)
(−1)n

(n + 1)
, (A1)

we can apply the following Gamma function identity

�(z − k)

�(z)
= (−1)k�(1 − z)

�(1 − z + k)
, (A2)

to obtain

γ̄ (SDC1) = −γ̄c

N−1∑

n=0

�(n + 1 − N )

�(−N )(n + 1)!

1

n + 1
, (A3)

which, if the factor 1/(n + 1) is written in terms of Gamma functions and the numerator and denominator are both
multiplied by n! = �(n + 1), becomes

γ̄ (SDC1) = −γ̄c

N−1∑

n=0

�(n + 1 − N )�(n + 1)2

�(−N )�(n + 2)2n!
. (A4)

According to the series definition of hypergeometric functions, the above is expressible as

γ̄ (SDC1) = γ̄c N 3F2(1 − N , 1, 1; 2, 2; 1), (A5)

which, by virtue of identity [25, 7.4.4-49] is equivalent to

γ̄ (SDC1) = γ̄c N
�(2)�(N )

�(1 + N )
(ψ(1 + N ) − ψ(1)) , (A6)

where ψ(z) is the psi function (the logarithmic derivative of the Gamma function) and corresponds to the series
[27, p. 496]

ψ(z) = −C +
∞∑

n=0

(
1

n + 1
− 1

z + n

)
, (A7)

where C is a constant (the Euler–Mascheroni constant).
In (A6), we observe that

N
�(2)�(N )

�(1 + N )
= N

1

N
= 1. (A8)

Furthermore, we have

(ψ(1 + N ) − ψ(1)) = −C +
∞∑

n=0

(
1

n + 1
− 1

1 + N + n

)
+ C −

∞∑

n=0

(
1

n + 1
− 1

1 + n

)

=
∞∑

n=0

(
1

n + 1
− 1

1 + N + n

)

=
N∑

n′=1

1

n′ (A9)
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which leads to the result published in 1954 by Brennan [23, Appendix VI]

γ̄ (SDC1) = γ̄c

N∑

n=1

1

n
. (A10)

Brennan’s derivation is based on attacking directly the integral for the average SNR (without prior expansion
of the polynomial), through a substitution and subsequent expansion in infinite series of part of the integrand.
Our approach (term-by-term integration, representation of the result as a hypergeometric series, and subsequent
simplification) has the virtue of being applicable also to SDC2 and the BER of DPSK for both SDC1 and SDC2
(see Appendices B and D).

Appendix B

Separating (31) into two sums, we get

γ̄ (SDC2) = σ 2
s σ 2

ν

κσ 2
ν σ 2

a

T1 + σ 4
s

κσ 2
ν σ 2

a

T2, (B11)

where

T1 = N
N−1∑

n=0

(
N

n

)
(−1)n

(n + 1)
, (B12)

and

T2 = N
N−1∑

n=0

(
N

n

)
(−1)n

(n + 1)2
. (B13)

Since T2 has the same form as the sum treated in Appendix A, we can apply the result therein to get

T2 =
N∑

n=1

1

n
. (B14)

Applying the identity (A2) to T1, the following alternate representation is obtained:

T1 = N
N−1∑

n=0

�(1 − N + n)�(n + 1)

�(1 − N )n!�(n + 2)
. (B15)

This sum now has a structure which matches that of the Gauss hypergeometric function and can be written

T1 = N 2F1(1 − N , 1; 2; 1), (B16)

to which the following identity can be applied [27, p. 508]:

2F1(a, b, c; 1) = �(c − a − b)�(c)

�(c − a)�(c − b)
, iff c − a − b > 0, (B17)

to yield

T1 = N
�(N )

�(1 + N )
= 1. (B18)

Therefore, substituting (B18) and (B14) into (B11), we finally obtain

γ̄ (SDC2) = σ 2
s σ 2

ν

κσ 2
ν σ 2

a

+ σ 4
s

κσ 2
ν σ 2

a

N∑

n=1

1

n
= σ 2

s σ 2
ν

κσ 2
ν σ 2

a

+ γ̄cσ
2
s

σ 2
a

N∑

n=1

1

n
. (B19)
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Appendix C

The bit error probability in Rayleigh fading of classical selection diversity is given by

P (SDC1)
2 =

∫ ∞

0
Pe(γ ) fγ (γ ) dγ, (C20)

where Pe(γ ) is the bit error probability expression for the modulation scheme of interest and fγ (γ ) has the form
of Equation (5).

Substituting (28) in (C20), we obtain

P (SDC1)
2 = N

N−1∑

n=0

(
N − 1

n

)
(−1)n

n + 1

∫ ∞

0
Pe(γ )gγ0

(
γ,

γ̄c

n + 1

)
dγ, (C21)

where gγ0 (γ,
γ̄c

n+1 ) is as defined in (35) and is the density of the SNR at the output of a single branch receiver
operating in Rayleigh fading with an average SNR of γ̄c

n+1 . It follows that the integral corresponds to the bit error
probability (with the modulation scheme of interest) of a single branch receiver averaged over Rayleigh fading,
thus leading to

P (SDC1)
2 = N

N−1∑

n=0

(
N − 1

n

)
(−1)n

n + 1
P2

(
γ̄c

n + 1

)
, (C22)

which holds for any common type of modulation.
However, given the numerical evaluation problems sometimes associated with alternate sums, is may be

desirable to derive from the above a different formulation whenever possible.
For example, for DPSK we have

P (SDC1,DPSK)
2 =

N−1∑

n=1

(
N − 1

n + 1

)
(−1)n

n + 1 + γ̄c
, (C23)

which, according to a development similar to that of Appendix A, reduces to the well-known result

P (SDC1,DPSK)
2 = N

2
B(1 + γ̄c, N ), (C24)

where B(a, b) = �(a)�(b)
�(a+b) is the Beta function.

Appendix D

From (47) and (37) and through straightforward algebraic manipulations, it can be shown that (38) can be written
in the following form:

P (SDC2,DPSK)
2 (τ ) = N

2

N−1∑

n=0

(
N − 1

n

)
(−1)n

An + B
, (D25)

where

A =
2κσ 2

a + 2σ 2
s + 2(1 − R2(τ )) σ 4

s
σ 2
ν

κσ 2
a

(D26)

B = 2κσ 2
a + 2σ 2

s

κσ 2
a

+ 2σ 4
s

κσ 2
a σ 2

ν

. (D27)

Applying the gamma function identity (A2), we get

P (SDC2,DPSK)
2 (τ ) = N

2A

N−1∑

n=0

�(−N + n)

�(−N )n!

1

n + B
A

, (D28)

where the factor 1
n+ B

A
can be expressed in terms of gamma functions by virtue of �(z + 1) = z�(z) to yield

P (SDC2,DPSK)
2 (τ ) = N

2A

N−1∑

n=0

�(1 − N + n)

�(1 − N )n!

�
(
n + B

A

)

�
(
n + B

A + 1
) . (D29)
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The summation is now in a form which corresponds exactly with the Gauss hypergeometric function [25] and
reduces to

P (SDC2,DPSK)
2 (τ ) = N

2A
2F1

(
− N + 1,

B

A
,

B

A
+ 1; 1

)
A

B
. (D30)

Noting that the A’s cancel out and given that 2F1(a, b, c; x) with x = 1 reduces to a ratio of Gamma functions
by virtue of (B17), it is finally found that

P (SDC2,DPSK)
2 (τ ) = N

2B

�
(

B
A + 1

)
�(N )

�
(

B
A + N

) . (D31)
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