An Efficient Regular Matrix Inversion Circuit
Architecture for MIMO Processing

Isabelle L.aRoche and Sébastien Roy

Department of Electrical and Computer Engineering,
Laval University, Québec, Qc, G1K 7P4, Canada
Email:{ilaroche, sebasroy} @gel.ulaval.ca

Abstract— A novel circuit architecture and algorithm is pre-
sented for the efficient implementation of a matrix inversion
unit. The division-free algorithm yields a scaled version of the
inverse and the scaling factor. Based on the Sherman-Morrison
formula, the proposed architecture is characterized by regular,
locally-connected arrays of processing units and simple iterative
processing. It is especially well-suited for covariance matrices,
or any other matrix which can be constructed from rank-one
updates of an initial matrix whose inverse is known. While it
constitutes an ideal solution for antenna array MMSE (minimum
mean-square error) processing, it can also be generalized to many
other applications with little effort. Implementation results of a
heavily pipelined matrix inverter on a Xilinx Virtex-II FPGA
are presented, including cost in logic slices and maximum clock
frequency. The cost / complexity of the proposed solution is com-
parable to, and in many cases better than, known alternatives.

1. INTRODUCTION

Maltrix inversion is a common operation in many signal
processing problems, including most block adaptation methods
used in adaptive communication systems.

In previous efforts [1], [2], implementation in hardware is
often non-trivial because of the need for complex operators,
e.g. division or square root. Many proposed architectures rely
on some form of factorization such as Cholesky [3] or QR
[4], [5], [6]. The latter class is of particular interest, and
includes many variants which exploit Givens rotations [7]
for efficient hardware-based QR decomposition. In particular,
the implementation described in [5] exploits squared Givens
rotations (SGR) [8] to avoid the square root operator, as was
originally suggested in [9]. However, a number of divisions
is still required. The (riangular locally-connected array of
processing units used therein yields directly a weight vector
for array processing where the necessary matrix inversion is
implicit. This approach is characterized by a very complex se-
ries of events and timing requirements, and therefore requires
a substantial design effort to emulate.

In [3], the use of the Sherman-Morrison formula was
employed to construct an inversion circuit which inverts a
series of matrices where two successive matrices differ only
by a small perturbation. The approach proposed herein uses
a modified form of the Sherman-Morrison formula to invert
a covariance matrix from scratch, while avoiding divisions
thanks to appropriate scaling.

0-7803-9390-2/06/$20.00 ©2006 IEEE

4819

There is some evidence that methods which involve re-
currence, such as Sherman-Morrison, iterative methods, and
various forms of Givens rotations-based inversion, typically
provide better numerical robustness and precision than conven-
tional direct inversion methods [6]. Simulations have shown
that this is true for the proposed method. Furthermore, a
means of dynamic scaling control was devised to maximize
the precision of the result when integer arithmetic is used.

II. OPTIMAL COMBINING USING MINIMUM MEAN
SQUARE ERROR CRITERIA

Figure 1 shows a typical M x M Multi-Input Multi-Output
(MIMO) system. In a Layered Space-Time (I.ST) scheme [10],
each (transmitting antenna’s signal is at some point estimated
by passing through a linear weight-and-sum structure (spatial
filter), where the optimal weight vector can be chosen accord-
ing to the zero-forcing (ZF) or the minimum mean-square error
(MMSE) criterion.

Fig. 1. An M xX M MIMO system

In the presence of interference, the optimal method is
MMSE combining, which requires knowledge of the received
signal autocorrelation matrix to compute the weights:

w =aR,, cf, ()

where o is a constant, cj is the desired channel vector and
R_! is the autocorrelation matrix.

Assuming the noise and interfering signals are uncorrelated,
the autocorrelation matrix is given by

M
Ry, = 0’1+) eief,)
=l

where o2 is the noise power, I is the identity matrix, ¢; and

cH are the channel vector and transposed-conjugate channel

K

vector, respectively, of the i** transmitted signal.

ISCAS 2006

The LST receiver architecture which constitutes the moti-
vation for the present work was designed in such a way that
estimates of the channel vector ¢; are successively obtained,
and are used to construct the R, matrix for each layer, This
structure given in (2) can therefore be exploited to perform
inversion.

ITI. SHERMAN-MORRISON FORMULA

The Sherman-Morrison formula [11], being a special case
of the matrix inversion lemma, allows the easy computation
of the inverse of a slightly-modified matrix A given that the
inverse of the original matrix is known. The perturbation must
take the form of a rank-1 update, e.g. uv?, where u and v
are vectors of appropriate dimensions.

Given A~ 1, the Sherman-Morrison formula is

(3

By examining (2), it can easily be seen that (3) can be di-
rectly applied to the autocorrelation matrix inversion problem.
Using a different notation, (3) becomes:

P (Rygbeel) T =Ry - EL (g

where R; = 0T + 3, _, cxell, so that Ry = Ryy, and
R,O JEI'

From a hardware perspective, equation (4) is problematic
because of the presence of division. By introducing appropriate
scaling, the division can be (ranslated into a multiplication,
thus avoiding this difficulty. The recurrent relation then be-

comes
= k”zfl IC f 1C) (f11 + CiC;)

Q1

' H gp—1
= 7((},@ 1+ ,%7/,171(3@) —

H gp—1 .

1CiC) Fy), (5)

where %, ' = R, ' and the scaling factor o can be

expressed as:

_ \
Wiy = ay (o + C,+1& Citt), (6)

with ag = 1.

IV. SYSTEM ARCHITECTURE
A. System description

Shown in Figure 2, the overall system architecture directly
implements the modified Sherman-Morrison formula (5). Each
box corresponds to a specific hardware unit, the main ones
being detailed in section V. At the system level, it is essen-
tially a dataflow architecture with some amount of pipelining.
Individual arithmetic units performing matrix and/or vector
operations are regular, locally-connected arrays.

Memory blocks and a high number of multipliers are
required, as well as other basic logic elements. In part because
of these requirements, the Xilinx Virtex-II family of FPGAs
seemed a natural target platform since it provides distributed

hard-wired 18 x 18 muldpliers and RAM blocks, which free up
the generic logic for the other required components (adders,
flip-flops, counters, etc). Simulation of the system was per-
formed using Matlab-generated test vectors in the Modelsim
XE testing environment.
V. MODULE DESCRIPTION

This section gives an in-depth view of the important mod-

ules in the implementation.

A. Matrix-vector multiplication

Shown in Figure 3, this unit computes the product ¢/ %,
Multiplexers are needed in order to select either the 11111,131
mairix, o2l or the result of the previous iteration. These
signals are input at the top of a linear Af-cell systolic array
comprised of multiply-accumulate celis. The current channel
vector is conjugated and input from the left of the array. The
resulting vector 1 fed into a series of AND gates to ensure
that only the final and valid result, not the intermediary value,
is sent to the next modules.

|n|t(1) R1

SelMat(1 A /SeIMat

Zero(1)% Zero(2

Fig. 3.

|n|t(2) Rz ees init(M)Ry

v
=3

1S eee —>
cIRxx

Zero(}%

Matrix-vector multiplication

B. Matrix-matrix muliiplication

Figure 4 details the matrix multiplier which compultes
B e @Y Since #; L ey = (cH 27, both inputs
of the unit come from the matrix-vector multiplier, one branch
being fed to a conjugate unit beforehand (see Figure 2). The
unit is comprised of a M x M-cell systolic array. Each cell
has the same structure as the one described above, with the
addition of a vertical passthrough link to propagate the top
inputs downwards. The results are multiplexed onto M output
lines in accordance with a specific structure.
C. Vector-vector multiplication

This unit implements ¢/YR, ! ¢,. The result of the matrix-
multiplication unit first has (o be transposed belore being
multiplied by the channel coefficient vector. This is performed
by a multiplexer which effectively acts as a parallel-to-serial
converter. Both vectors are fed to a single cell.

D. Scaling factor addition

Figure 5 shows the implementation of al,l———i———c A]cl and
(6). A {lip-flop is used as a memory element Lo store lvhe value
of «. This value is added (o the vector-vector multiplication
result. The new o is computed and stored into the memory
clement.

4820

s 41 Init
— Channel F& Memor Matrix X
r_> estimationj buffer j SNR Vector
M

L [Addition
' Multiplication)

Vector X
Vector

\/

Subtraction

M- 1t

DR

——
Zp—>
Prp—
2 Zin——]
Z13 >
Z——5
: ., oHorl
Zom Zom——>> Rzzclgc'ikzz

Z14 =20
R N ZM—>O > F
" ®: conjugate | g 2 >

Matrix-matrix multiplication

S q+cl|'l Rxx Ci

Fig. 5.

Scaling factor addition

VI. SEQUENCER

Figure 6 shows the diagram of the state machine generating
all the control signals required (o ensure proper sequencing of
the system.

Because of the layered structure, the circuitry is used more
than once to compute the inverse and many units need to be
turned on and off at specific times. This is crucial for the
units containing processing cell arrays. Also, the accumulated
values from a previous iteration must be cleared before starting
the next computation. Enable (enMV, enMM and enVV) and
clear (clrMV, clrMM and clrVV) signals are thus needed to
control the array cells. In the linear and square arrays, the cells
must be controlled by individual enable and clear signals. To
achieve this simply, while maintaining the generic, scalable
quality of the design, a single enable and a single clear signal
are generated by the FSM. A sequence of flip-flops provides

General system architecture

me <= ‘0", loadM <= ‘0’;enScale <= ‘0"; cIrMM <="0’;
mwe <= ‘0"; selMV <= ‘0’;cIrScale <= ‘0", count <=0;
enMV <=0"; selC <='0’; loadScale <='0’; count2 <=0;
cIrMV <= ‘0"; enVV <= ‘0"; enLambda <= ‘0’;,count3 <=0;
zeroMV <= ‘0’;clrVV <= ‘0’; enMM <='0’; count_iter <= 0,
me <= 1’;
(Nvalid = 0 mwe <= 1"
- — enMV <= ‘1,
L foadh <= 1.
clr'VV <= '1’; clrScale <= ‘1’;
Lo g count <= 0;
2%?,{;5230?._ T count_iter < M count2 <= 0:
cIrMM <= 1" count3 >= M+1 —
ot e e e o=
+
enVV <= 0’; coun count += 1;
clrvVV <= '1’;
selMV <=1’ count += 1;
S e
enScale <=0,
loadScale <= ‘0’;

R -
enScale <= 1, m\?vei:—qd’-
count2 <= 0; =0;
if (count_iter = 0) _ enMV <= 0
loadScale<= 1”; cIMV <="0’; cIMV <= ‘1"
else ' count2 += 1; count2 += 1;
loadScale<=0’;
end,

count2 +=1;

Fig. 6. State Machine

various delayed versions of these master signals.

The generation of the initial matrix also requires some
control circuitry. First, M flip-flops are loaded with the o2,
The load signal loadM generated by the FSM is for the first
flip-flop and since this value is exclusively on the diagonal, a
delay of 2 clock cycles is introduced between loadM and the
other flip-flops.

The system contains many multiplexers whose select signals
are generated by the FSM. The multiplexer for the channel
coefficient vectors switches inputs at each iteration, so that
its select signal,selC, is tied to a counter, count.iter which
counts the number of iterations completed so far. For the
input multiplexers of the matrix-vector multiplication unit, the
switch between the two inputs must not occur at the same time
for all A multiplexers because each line is delayed one clock
cycle from the previous. Thus, the select signal generated by
the FSM, selMV, is used directly by the first mux and delayed
for the other muxes. selMV is also delayed and used by the

4821

multiplexer for the matrix input of the muldplication unit. The
input multiplexer of the vector-vector multiplication unit must
change at every clock cycle for a total of M switches, so it
is tied to counter countZ controlled by the FSM. The output
multiplexers for the matrix-matrix multiplication must also
switch between lines at every clock cycles for a total of M
swilches. A series a flip-flops delay selMV by the appropriate
number of cycles and the end signal is used by the first mux.
Again, not every mux must be switched at the same time, so
flip-flops are used as a mean to delay the select signal for the
remaining muxes.

The scaling factor addition contains a memory element that
must be controlled by the FSM. Three signals — enScale,
loadScale and clrScale — are used (o properly control this
unit. Particularities of these signals are that loadScale is tied to
one for a single clock cycle during the entire inverting process
and clrScale is also tied to one for a single clock cycle, at the
end of the M iterations before the next inversion starts.

Specific to the matrix-vector multiplication unit is a control
signal fed to the output AND gates called zeroMV. Again, the
one generated by the FSM is delayed before being fed to the
other AND gates.

V1L

The implemented system was synthesised using Xilinx X8T
on a Virtex-II XC2V6000. Preliminary logic resource cost
results are shown in Table 1. The maximum clock frequency
is currently 108.3 MHz and avenues have been identified for
further optimization.

IMPLEMENTATION RESULTS

Logic 4-input 18 X 18
Slices LUTs Multipliers
Matrix-vector 765/33792 1412/67584 16/144
multiplication 2% 2% 11%
Matrix-matrix | 3108/33792 | 3850/67584 64/144
multiplication 9% 8% 44%
Vector-vector 187/33792 350/67584 4/144
multiplication 0% 0% 2%
Multiplication | 780/33792 376/67584 16/144
2% 0% 11%
Total 4446/33792 | 7805/67584 101/144
13% 11% T0%
TABLE 1

IMPLEMENTATION RESULTS

A single matrix inversion requires 47 clock cycles, ex-
ploiting M? + M simple processing cells. In comparison,
Edman’s solution [2] is a linear array of 2M processors with
O(2P(M? + M — 1)) time units being required to complete
an inversion, where P is the degree of pipelining with each
processing cell. A high degree of pipelining is mandatory (the
author proposes I7 = 5) to obtain a decent clock frequency
because of the high latency of the required division operator.
The very best methods [1] which also require M? + M
processors (lypically as two (riangular arrays of MEEM oo
ments) manage to compute the inverse in linear time. However,
these methods necessarily involve division and/or square root

operations and both the individual processing cells and the
sequencer are much more complex than with the proposed
method. Furthermore, the O(M?) completion time of the
proposed technique is due to the systolic-style dataflow (which
simplifies routing and control signal requirements). Linear
time is achievable in principle by using pipelining between
iterations and between successive inversions.

VIHI. CONCLUSION
A division and square-root free matrix inversion unit was
proposed and designed for incorporation into a layered space-
time MIMO receiver. It is implemented using integer arith-
metic and handles complex-valued matrices. It requires that
the inputl matrix be expressible as a sum of rank-1 updates, a
condition automatically met in a LST receiver since individual
channel estimates are available. It was implemented in a
Virtex-II FPGA with the inclusion of a dynamic scaling
circuit (using simple shifts) to improve precision and avoid
underflow/overflow. Further optimisations are planned, as well
as a detailed precision analysis.
ACKNOWLEDGMENT
This work was supported by the National Sciences and
Engineering Research Council of Canada (NSERC) under
its Discovery Grant Program. The support of the Canadian
Microelectronics Corporation (CMC), under its System-On-
Chip Research Network (SOCRN) program, is also gratefully
acknowledged.

REFERENCES

[11 A. El-Amawy, “A systolic architecture for fast dense matrix inversion,”
IEEE Transactions On Computers, vol. 38, no. 3, pp. 449-455, May
1989.)

[2] F. Edman and V. Owall, “A scalable pipelined complex valued matrix
inversion architecture,” in JEEE International Symposium on Circuits
and Systems, Kobe, Japan, May 2005.

[3] M. Ylhinen. A. Burian, and J. Takala, “Updating matrix inverse in fixed-
poinit representation: Direct versus iterative methods,” in IEEE Inter-
national Symposium on System-on-Chip, Tampere, Finland, November
2003.

[4] Z. Liu, J. V. McCanny, G. Lightbody, and R. Walke, “Generic soc

qr array processor for adaptive beamforming,” [EEE Transactions On

Circuits and Systems - II: Analog and Digital, vol. 50, no. 4, pp. 169~

175, Avril 2003.

G. Lightbody, R. Woods, and R. Walke, “Design of parameterizable

silicon intellectual property core for qr-based rls filtering,” IEEE Trans-

actions On Very Large Scale Integration (VLSI) Systems, vol. 11, no. 4,

pp. 659-678, Aot 2003,

T. Shepherd and J. McWhirter, “Systolic Adaptive Beamforming,” in

Radar Array Processing, S. Haykin, J. Litva, and T. Shepherd, Eds.

Springer-Verlag, 1993.

G. H. Golub and C. ¥ V. Loan, Matrix Computation.

University Press, 1991, second Edition.

[8] R. Dohler, “Squared givens rotation,” IMA Journal of Numerical Anal-
ysis, vol. 11, pp. 1-5, 1991.

[9] W. M. Gentleman and H. T. Kung, “Matrix triangularization by systolic

arrays,” SPIE Real-Time Signal Processing IV, vol. 298, pp. 19-26, 1981,

G. I. Foschini, “Layered space-time architecture for wireless commu-

nication in a fading environment when using multi-elerment antennas,”

Bell Labs Technical Joumnal, pp. 41-59, Fall 1996.

[11] E. W. Weisstein, Sherman-Morrison Formula, From

MathWorld-A Wolfram Web Resource. [Online]. Available:
http/fmathworld. wolfram.com/Sherman-MorrisonFormulahtml

]

[6)

[7]

Iohn Hopkins

[10]

4822

