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Abstract

It is well known that to perform accurate Direction of Arrivals (DOA) estimation using algorithms like MUSIC

(MUltiple SIgnals Classification), antenna array data must be calibrated to match the theoretical model upon which DOA

algorithms are based. This paper presents experimental measurements from independent sources obtained with a linear

antenna array and proposes a novel calibration technique based on artificial neural networks trained with experimental

and theoretical steering vectors. In this context, the performance of 3 types of neural networks—ADAptive LInear Neuron

(ADALINE) network, Multilayer Perceptrons (MLP) network and Radial Basis Functions (RBF) network—is assessed.

This is then compared with other calibration techniques, thus demonstrating that the proposed technique works well while

being very simple to implement. The presented results cover operation with a single signal source and with two

uncorrelated sources. The proposed method is applicable to arbitrary array topologies, but is presented herein in

conjunction with a uniform linear array (ULA).

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Array antenna usage in various communication,
radar and instrumentation systems has been grow-
ing dramatically over the last few years for several
reasons. The emergence of new antenna shapes
simplified their production, given their simplicity.
Several such antennas can be integrated, together
with some circuitry, into a monolithic small-scale
device, effectively resulting in low-cost, diminutive

antenna arrays. The advent of increasingly cheaper
signal processing chips (DSP) makes possible the
sophisticated processing of the plurality of signals
from an antenna array at a low-cost, low-power
consumption, and in a small form factor. Given the
digital processing power available to analog to
digital interface can be moved closer to the antenna,
thus reducing the complexity and cost of the RF
section. This core signal processing itself can take
various forms, can include parameter estimation,
adaptive filtering and detection.

In the case of this present work, two well-known
classes of space-time processing algorithms are of
interest: beamforming and Direction of Arrivals
(DOA) estimation.
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However, in a real-world, there are some reasons
which limit the general use of antenna arrays. One of
them is the precise calibration required such arrays
when they are used for specific tasks, such as
beamforming and DOA estimation which require
the acquisition of the precise amplitude and phase
relationships of the signals collected at each element.
These relations are unfortunately sensitive to many
potential error sources, leading to severe performance
constraints. First, phase and gain imbalances between
the in-phase (I) and quadrature (Q) branches of each
element receiver/transmitter subsystem and the I/Q
bias errors due to electronic DC offsets cause a
divergence from the statistical model upon which
signal processing algorithms depend; more details on
this source of error are available in [1,2]. Indeed, the
said algorithms are constructed based on various
assumptions, such as the ideal properties of complex
Gaussian variates originally postulated by Goodman
[3]. Another deviation between theory and practice is
due to the co-channel gain and phase errors, i.e. the
variations between the multiple element receiver/
transmitter subsystems themselves. The third error
source is the mutual coupling effects between the
elements comprising the array. The fourth error
source in an experimental antenna array setup is the
element location errors or uncertainties. Finally,
scattering by the antenna mounting structure or other
nearby structures constitutes a fifth source. These
causes of errors can be considered statics during a
sufficient period of time.

All of these perturbations consequently affect the
specific structure of the data covariance matrix.
Furthermore, the theoretical steering vectors can
find themselves outside the experimental signal
subspace. These effects imply a poor or erroneous
performance by signal processing algorithms, as can
be seen in Section 5 and in [4,5] which analyze the
performance of these algorithms in the presence of
model errors.

The solution to all of these problems is inevitably
some form of data calibration to fit the theoretical
model or, equivalently, the experimental array
manifold calibration with respect to the presumed
steering vectors set. Fig. 1 shows a schematic
representation of a linear uniformly spaced antenna
array used to perform DOA estimation for M

sources. The RF front-end is detailed in Section 5
while the digital processing apparatus is discussed in
Sections 2 and 4.

A lot of contributions can be found in the litera-
ture on the topic of antenna array calibration. Most

are based only on simulation, which by itself
probably yields an incomplete picture of this
essentially experimental issue. These works can
collectively be slated into three main approaches.
First, some authors [6] attempt to bypass the
calibration problem by constructing a new data
covariance matrix which has a Toeplitz structure.
The second class is referred to as auto calibration or
online calibration, because it does not require knowl-
edge of the directions of the calibrating sources.
Finally, the last approach is designated trained

calibration or offline calibration and it implies
knowledge of the calibrating sources’ (pilots) exact
bearings.

The first approach is only applicable in the case
where sensor location errors alone are present. The
second one is generally iterative and is not really
self-sufficient, because such algorithms, globally
based on some form of least-squares fit, require
initial calibration [7–12], some a priori information
about a received signal (such as a CDMA code [7,8])
and/or it is assumed that part of the response is
known (like in [13] where the sensor gains are
assumed known). Also, these iterative algorithms
can potentially converge to a local minimum rather
than the global one if the initial conditions are not
sufficiently close to the solution [7,10,14–16].
Furthermore, the majority of these pseudo-self-
calibration algorithms have been studied by focus-
ing on one or more error sources, but rarely on all.
For example, [12,17–20] focus only on the ampli-
tude and/or phase errors, [21] on mutual coupling
and scattering, [22–25] on I/Q imbalances and
[15,26] on sensor position errors or uncertainties.
Also, some techniques [27,28] necessitate a different
calibration step for each error source.

On the other hand, training-based calibration
requires knowledge of the calibrating sources’
angular positions [4,12,14,29–32]. As explained
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Fig. 1. A schematic representation of a linear equispaced array

receiver performing DOA estimation.
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previously, however, these self-calibration algo-
rithms are also heavily dependent on various
idealizations.

So, the concept of supervised calibration online is
investigated and it is found that artificial neural
networks (ANNs) constitute a powerful algorithmic
tool for this application. In the literature, the joint
use of neural networks and antenna arrays serves
almost exclusively to directly estimate the directions
of arrivals of signals impinging on the array [33,34].
The principal advantage of neural networks over
classical DOA algorithms is that they can learn
from non-calibrated data (calibration is implicit to
the learning process), but the training procedure for
more than one source is in our view too demanding
(i.e. the number of training samples grows in a
combinatorial fashion with the number of sources)
for a practical implementation [35] and this is why
in previous efforts such as [36] experiments are
limited to the one source case. To the best of the
authors’ knowledge, there is only two papers which
performs explicit antenna array calibration via
neural networks [37,39], but it provides no details
on the data used to train the network and no explicit
results of the calibration or comparisons with other
algorithms. Furthermore, the neural network se-
lected comprises many neurons and the training
algorithm, a variation of the backpropagation
algorithm, seems heavy for this problem, leading
to significant implementation complexity.

The above observation is based on the fact that
our implementation gives excellent experimental
results even though it is based on a single-layer
linear neural network comprising far fewer neurons
than the solution presented in [37]. Furthermore, it
is trained with the experimental and theoretical
steering vectors by a low-complexity algorithm
based on least-squares optimization. This simplicity
makes the proposed algorithm an ideal candidate
for real-time low-cost implementation. It should
also be noted that, although the experimental array
used herein is of the uniform linear (ULA) variety,
this is not restrictive and the proposed method can
be applied to any topology.

The paper is organized as follows: Section 2
describes the antenna array model; Section 3
introduces the ANN model; Section 4 describes
the proposed algorithms as well as two other
algorithms often seen in the literature for compar-
ison and Section 5 presents the experimental setup
and results. Finally, Section 6 concludes the paper
by discussing and summarizing the findings.

2. Antenna array model

We consider here an N-sensor uniform linear
array (ULA) with I/Q receivers at each sensor as
seen in Fig. 2, but any other N-sensor array
geometry can be used. The output of the nth sensor
is formed by the in-phase In and the out-of-phase
Qn components of the received signal. From
sampling all receiver outputs, we build the matrix
X composed by K independent snapshot vectors xk.
We can assume that a snapshot comprises N

Gaussian random components of the Goodman
class [3] with zero-mean and covariance matrix R.
This distribution originates in part from the fact
that the signals emitted by the M sources are
independent (and hence uncorrelated). It is also
based on the assumption of independent Gaussian
samples which is widely used in signal processing
[38, Appendix J] and is known to work well when
applied to linear systems.

Each of these snapshot vectors can be expressed as

xk ¼ ½ðI1 þ jQ1ÞðI2 þ jQ2Þ � � � ðIN þ jQNÞ�
T

¼
XM
i¼1

aiðkÞaðyiÞ þ gk, ð1Þ

where aiðkÞ are complex random Gaussian variables
with zero-mean and variance s2i related to the power
received from the ith source, aðyiÞ are the steering
vectors associated with the ith source and gk are
vectors of zero-mean additive Gaussian noise with
variance s2Z.

For a ULA, the steering vector of the ith source is
theoretically given by

aðyiÞ ¼
1ffiffiffiffiffi
N
p ½1 ejji ej2ji � � � ejðN�1Þji �T, (2)
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Fig. 2. A linear equispaced array.
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where ji is the electrical delay between each
antenna’s signal due to the inter-antenna distance
d, the ith source’s position yi and his wavenumber li

and is expressed

ji ¼
2pd

li

sinðyiÞ. (3)

The data matrix can now be expressed as

X ¼ ½x1 x2 � � � xK �

¼ ASþN, ð4Þ

with

A ¼ ½aðy1Þ aðy2Þ � � � aðyMÞ�, (5)

N ¼ ½g1 g2 � � � gK �, (6)

S ¼ ½s1 s2 � � � sK �, (7)

sk ¼ ½a1ðkÞ a2ðkÞ � � � aMðkÞ�
T. (8)

In this ideal situation, the data covariance matrix R

is Hermitian Toeplitz and can be approximated by

R̂ � XXH, (9)

where h�iH denotes the complex conjugate transpose
operation. We can perform its eigendecomposition:

R ¼
XM
i¼1

liviv
H
i þ

XN

i¼Mþ1

liviv
H
i

¼ VsKsV
H
s þ s2ZI, ð10Þ

where flig are the N eigenvalues in decreasing
magnitude order, associated with the eigenvectors
fvig. The Hermitian symmetry of this matrix ensures
that the eigenvalues are real and the eigenvectors are
orthogonal. The first M eigenvectors constitute the
signal subspace and the others form the noise
subspace.

We know that the M first eigenvectors span the
same subspace as the M assumed steering vectors
aðy1Þ to aðyMÞ and the other eigenvectors define a
subspace orthogonal to the steering vectors.

This structure is exploited by classic DOA
algorithms. For example, the MUSIC (MUltiple
SIgnals Classification) algorithm [40] is based on the
ordinary Euclidian distance between all the possible
steering vectors and the signal subspace and can be
expressed as

PmusicðyÞ ¼ 20 log10
1

aHðyÞPnaðyÞ

� �
, (11)

where aðyÞ is built like (2) using y as a scanning
angle variable and Pn ¼ I� VsV

H
s is the projector to

the noise subspace which is perpendicular to the
signal subspace spanned by the eigenvectors Vs.
Eq. (11) is called the MUSIC pseudospectrum.

Unfortunately, when experimental data from an
uncalibrated array are used with this algorithm, it
yields erroneous results (as can be seen in Fig. 13).
This is due to the fact that the theoretical steering
vectors do not lie exactly in the experimental signal
subspace. It follows that we have to modify the
underlying theoretical model to take into account
the effects of the non-ideal behavior of the experi-
mental antenna array.

Based on the simplifying assumption that the
problem is linear, the experimental data matrix
collected from an experimental uncalibrated anten-
na array is now given by

X ¼ CASþN, (12)

where C is a complex distortion square matrix which
embodies all the non-ideal effects due to imperfec-
tions in the experimental array. If the array presents
only gain and phase errors between the I and Q
branches of each sensor, C is diagonal. In the
cases of branch-to-branch gain and phase mis-
matches and mutual coupling, C includes off-
diagonal elements. Sensor location errors can also
be taken into account, since they constitute another
source of branch-to-branch gain and phase errors.
It follows that all non-ideal effects of the experi-
mental setup can be encapsulated in this distortion
matrix.

Hence, the goal of the calibration procedure is to
compensate for the distortion matrix—which em-
bodies all linear imperfections—in addition to any
non-linear distortions which might be present.

3. ANN model

ANNs are used herein as a distributed parallel
computing mechanism which establishes a mapping
between the input and output spaces of the network,
like a lookup table with intrinsic interpolation
between samples. This mapping is constructed
implicitly via supervised learning, i.e. the presenta-
tion to the network of training samples comprising
an input signal and a corresponding desired
response. During training, the values of weights
and biases are modified to minimize the error
between the output of the network and the desired
one until the network converges to a steady state.

Fig. 3 presents the model of an ANN with two
layers in matrix notation. The network output y2 is

ARTICLE IN PRESS
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linked to the input p via

y2 ¼ F2ðn2Þ ¼ F2ðW2½F1ðW1pþ b1Þ� þ b2Þ, (13)

where fWig are the weight matrices, fbig the bias
vectors, fyig the output vectors and Fi are the
activation functions of the ith layer.

The proposed calibration technique has been
implemented with different types of ANNs, i.e.
ADAptive LInear NEuron (ADALINE), Multi-
layer Perceptrons (MLP) and Radial Basis Func-
tions (RBF). The simplest type of neural network
used is ADALINE [41], which consists of a single
layer and a linear activation function as illustrated
in Fig. 4.

The supervised training of this network is based
on an approximation of the minimization of the
sum of the squared errors between the outputs of
the network and the desired responses, as described
in Section 4.2.

The output y of this network is obtained with

y ¼Wpþ b. (14)

The second type of neural network used is a form of
MLP which consists of two neuron layers, the first
one having a logsigmoid activation function

F1 ¼ logsigðnÞ ¼
1

1þ e�n
, (15)

and the second one having the linear activation
function illustrated in Fig. 5. The weights and biases
of the network are iteratively adjusted to minimize
the network performance function, i.e. the average
squared error between the network outputs and the
target outputs. This iterative training procedure is

performed using the backpropagation algorithm
[42] which uses the negative of the gradient of the
performance function to update the values of biases
and weights at each iteration.

The output y2 of this network is obtained with

y2 ¼W2y1 þ b2 ¼W2 logsigðW1pþ b1Þ þ b2. (16)

The third neural network used to perform the
calibration procedure is an RBF comprising two
layers of neurons. The first one is composed of
radial basis functions

F1 ¼ radbasðnÞ ¼ e�n2 , (17)

and the second one of linear activation functions, as
illustrated in Fig. 6. The training procedure of this
network is quite different from the others: the
weights of the first layer are fixed to the values of the
training patterns, the biases are all equal to a
constant value determined by

b1 ¼
0:8326

SPREAD
, (18)

where SPREAD is a numerical value found
empirically which determines the width of an area
in the input space to which each neuron responds.
The second layer is trained in a manner identical to
the ADALINE network. The output y2 of this
network is obtained with

y2 ¼W2y1 þ b2 ¼W2 radbasðkW1 � pk � b1Þ þ b2,

(19)

where kW1 � pk is the Euclidean distance between
each rows of W1 and p, and � is the Hadamard
product.
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Fig. 3. ANN model.

Fig. 4. ADALINE neural network mdel.

Fig. 5. MLP neural network model.

Fig. 6. RBF neural network model.
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The choice of the ADALINE neural network is
motivated by its simplicity and relies on the linear
assumption discussed earlier. The MLP structure is
drawn from [37] where it is used for calibration
purposes and serves as a performance benchmark.
Indeed, it constitutes a rare example of a published
application of neural networks to the calibration
problem. Finally, the RBF neural network is
included because it can be quickly and easily
designed and constitutes a natural solution in a
mapping application between the input and output
spaces of the network. Both the MLP and RBF
networks perform non-linear processing (which
implies higher complexity) and can therefore help
to determine whether the linear assumption is
justified.

For further details on the neural network models
and associated learning algorithms, see [41–43].

4. Calibration algorithms

In what follows, we review existing algorithms
before presenting the proposed algorithm in relation
with the state of the art.

4.1. Known algorithms used for comparison

As stated previously, the theoretical steering
vectors aðyiÞ do not lie completely in the experi-
mental signal subspace without calibration. Most
previous works (see for example [14]) propose to
find a calibration matrix G, it being the inverse of C
in (12) in the least-squares sense. Mathematically,
we have

Ĝ ¼ min
G
kA�GÂek, (20)

where Âe denotes an estimate of the experimental
steering vectors obtained via eigenanalysis of the
spatial covariance data matrix. The matrix A is the
theoretical one obtained from (2) given the exact
position of sources.

The minimization (20) can be solved to yield [42]:

Ĝ ¼ AðÂ
H

e ÂeÞ
�1Â

H

e . (21)

The calibration procedure is then simply

Y ¼ ĜX, (22)

where Y is the calibrated data matrix. The major
problem with this method is the possibility of
convergence to a local minimum rather than the
global one.

Another calibration algorithm [22], which cor-
rects only I/Q imbalances, is based on the principle
of the Gram–Schmidt orthogonalization. Consider
the in-line I i and quadrature Qi signals at each
antenna

I iðtÞ ¼ ð1þ �ÞA cosðotÞ þ �I ,

QiðtÞ ¼ A sinðotþ fÞ þ �Q, ð23Þ

where � represents the amplitude difference between
these components, �I and �Q the signal offsets and f
the phase imbalance between them. First of all, the
DC offsets �I and �Q must be removed to obtain new
signals I 0i and Q0i

I 0iðtÞ ¼ ð1þ �ÞA cosðotÞ,

Q0iðtÞ ¼ A sinðotþ fÞ. ð24Þ

By virtue of the Gram–Schmidt procedure, a scalar
E must be found to normalize I 0i and a part P of I 0i
must be subtracted from Q0i to complete the
orthogonalization and finally obtain signals I 00i and
Q00i . In matrix notation, we have

I 00i ðtÞ

Q00i ðtÞ

" #
¼

E 0

P 1

� �
I 0iðtÞ

Q0iðtÞ

" #
.

The desired result being

kI 00i ðtÞk ¼ kQ
00
i ðtÞk,

I 00i ðtÞ

Q00i ðtÞ
¼ e�j

p
2, ð25Þ

we find after some algebraic manipulations

E ¼
cosðfÞ
1þ �

,

P ¼
� sinðfÞ
1þ �

. ð26Þ

The major advantage of this technique is its
autonomy, i.e. it does not rely on a set of known
sources for training purposes. Hence, it can be
referred to as absolute calibration; its performance,
however, is poor compared to our expectation as
illustrated in Section 5.

4.2. Proposed algorithm

The originality of the proposed approach centers
on the use of ANNs to perform calibration. ANNs
can easily provide real-time solutions thanks to their
relatively low computational complexity and their
mostly parallel architecture which makes them
natural candidates for implementation in VLSI
[44–46]. Experiments have shown that they also
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alleviate the problem of convergence to a local
minimum since they typically always converge to
the global one when training and structure are
adequate. We find that a linear neural network
trained with L input/target vector pairs formed by
the real and imaginary parts of the experimental and
assumed steering vectors gives excellent results even
if the learning algorithm is very simple and the
number of neurons is small.

Fig. 7 shows a block diagram overview of the
DOA processing chain with the proposed calibra-
tion approach. It consists of the standard sequence
of operations detailed in Section 2 which lead to the
MUSIC pseudospectrum, with the inclusion at the
front end of the neural network which compensates
for all distortions by minimizing a single global
quality measure, namely the mean-square error
(MSE). At first, we begin by the learning process

which adjusts the values of the weights and biases by
minimizing an approximation of MSE between the
output vectors yðkÞ (acalðkÞ, the calibrated steering
vectors) and the target vectors tðkÞ (aðkÞ, the exact
steering vectors) for the input vectors pðkÞ (âeðkÞ, the
experimental steering vectors), i.e.

MSE ¼ F ðeÞ �
1

L

XL

k¼1

X2N

i¼1

ðeiðkÞÞ
2
¼

1

L

XL

k¼1

eðkÞTeðkÞ,

(27)

with eðkÞ ¼ tðkÞ � yðkÞ. This performance index F is
a quadratic form which ensures the convergence of
the training process to a global minimum (the
quadratic error surface is monotonic), as confirmed
by the experimental results. Using the LMS algo-
rithm [43], which approximates the MSE-based
steepest descent procedure by using the instanta-
neous squared error as an estimate of the MSE at
each iteration, the rules to update the network

parameters at iteration k þ 1 are

Wðk þ 1Þ ¼WðkÞ þ 2aeðkÞpTðkÞ,

bðk þ 1Þ ¼ bðkÞ þ 2aeðkÞ, ð28Þ

where a is the step size which is empirically chosen
to ensure convergence.

One source located at various known angles of
arrival is used at this step. Then, only the
eigenvector associated to the highest eigenvalue at
the output of the eigendecomposition box pðkÞ (see
Fig. 7) is taken for the training. This eigenvector is
equivalent to the experimental steering vector of
the source âeðkÞ for each angle of arrival. The
ANN adjusts its parameters to give a calibrated
steering vector acalðkÞ very close to the exact steering
vector aðkÞ.

The calibration based on the two other consid-
ered types of neural networks gives similar results
while requiring longer training (MLP) or compris-
ing more neurons (RBF), as detailed below.

Once the training is complete, the DOA proces-
sing can now be applied with unknown sources. In
this step, all eigenvectors are putted in the input of
the ANN to obtain calibrated eigenvectors. The M

eigenvectors associated to the highest eigenvalues
span the same signal space that one spanned by the
corresponding calibrated steering vectors. So, we
get Pncal which is taken to compute the ordinary
Euclidian distance as in (11).

5. Experimental setup and results

Fig. 8 shows the experimental antenna array
comprising 8 horn antennas operating in the X band
(8–12GHz). While the design of this setup was as
rigorous as possible, it presents all the imperfections
discussed previously, i.e. phase and gain imbalances
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Fig. 7. Block diagram of DOA processing chain yielding MUSIC pseudospectrum (11) with neural network-based array calibration.
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between the in-phase (I) and quadrature (Q)
branches of each antenna receiver subsystem, I/Q
bias errors, branch-to-branch gain and phase errors
due to the variations between the antenna receiver
subsystems, mutual coupling effects between the
antennas on the array and sensor location errors or
uncertainties and potentially scattering by the anten-
na mounting structure or other nearby structures.

The numbers in Fig. 8 refer to Fig. 9 which
presents a block diagram of the experimental setup
for a one-antenna receiver subsystem. The different
elements are: 1. horn antenna, 2. waveguide WR-90
to SMA adaptor, 3. low noise RF amplifier and
mixer, 4. RF generator, 5. RF amplifier, 6. power
divider 1–8 (for each subsystem), 7. low frequency
amplifier, 8. power divider 1–2 (for I/Q branches), 9.
low frequency signal generator, 10. quadrature
power divider, 11. power divider 1–8 (for each
subsystem) and 12. low frequency mixer.

The effects of branch-to-branch gain and phase
errors and sensor location errors are illustrated in
Fig. 10.

Fig. 11 shows the calibration impact on signals
with the proposed algorithm: branch-to-branch gain
and phase errors are corrected, but it was observed
that the calibration procedures do not alleviate
completely the I/Q imbalances: the Lissajou I/Q
plot [47] is still an ellipse as shown in Fig. 12 for a
typical branch.

Finally, the compound effects of these perturba-
tions on the performance of DOA algorithms is
obvious when looking at Fig. 13, which presents the
pseudospectra obtained before and after calibration
for one source at 0�.

Given the effects of the imperfections of the
experimental setup, details of the calibration procedure
follow. Measurements are taken with one source in the
X band at each half degree between�20� and 20�. For
each measurement, the principal eigenvector of the
spatial covariance matrix is used as the experimental
steering vector, while the assumed steering vector is
created based on the measured source position. This
operation gives us the input/output training set.

Once the training set is obtained, the experimen-
tal steering vectors obtained from the users’ signals
can be calibrated to obtain their accurate DOAs.

Fig. 13 presents the excellent calibration result for
one source at array broadside ð0�Þ with a training with
all sources. We can see that the best performance, the
highest peak which corresponds to the shortest
distance between the signal subspace and the calibra-
tion steering vector, is obtained by RBF, followed by
MLP, ADALINE, G matrix and finally the I/Q
calibration procedure. These results indicate that for a
DOA in the training set, all trained algorithms give a
good solution and we also conclude that the I/Q
imbalances are less important for the performance of
DOA algorithms than the branch-to-branch ones.

To compare the performance of these techniques
when the DOA is not part of the training set, we
calculate the mean angle yaverage between the
calibrated acal and the theoretical a steering vectors
for different sizes L of the training set

yaverage ¼
1

L

XL

i¼1

arccos
kaHðiÞacalðiÞk

kaHðiÞkkacalðiÞk

� �
. (29)
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Fig. 8. The antenna array.

Fig. 9. Receiver chain block diagram in one antenna branch.
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These results are presented in Fig. 14. We can
conclude that the performance of all these trained
algorithms is much poorer when the training set is
smaller (as usual) and the best tradeoff between

performance and ease of implementation is pro-
vided by ADALINE.

A neural networks comparison based on their size
follows in Table 1. In summary, the size of the
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ADALINE network depends only on the number of
antennas N; the RBF network depends on the
number of antennas N and the size of the training
set L; the size of the second layer of the MLP
network depends on the number of antennas N and
the first layer can be of any size, but empirically we
conclude that to obtain good results, we have to fix
this first layer the same size as the second one.

To demonstrate the good generalization capacity
of the neural networks, they were used to calibrate
new experimental steering vectors from the spatial
covariance data matrix of two uncorrelated sources.

The results of two independent experiments ob-
tained with the neural networks are compared in
Figs. 15 and 16 with the same obtained with the
method of the calibration matrix Ĝ in (21).

The experiments are limited to two typical trials
with two sources and the results are sufficiently
satisfactory for our purposes: we can see in Figs. 15
and 16 that the proposed technique based on
ADALINE generalizes well and outperforms the
G matrix method while its computational complex-
ity is of the same order. But the two other types of
neural networks, MLP and RBF, are less attractive
due to the presence of more peaks in the pseudos-
pectrum than the real number of sources as can be
seen in Figs. 15(a) and 16(a).

This can be explained given the fact that the
training of a neural network can be seen as a
function approximation of the input vectors. Hence,
neural networks with too many degrees of freedom
are probably too non-linear for this application and
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Table 1

Neural networks size comparison

W1 b1 W2 b2

ADALINE 2N 	 2N 2N 	 1 – –

RBF L	 2N L	 1 2N 	 L 2N 	 1

MLP 2N 	 2N 2N 	 1 2N 	 2N 2N 	 1
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will introduce unnecessary features, like curve fitting
with a high-degree polynomial.

6. Conclusion

An original calibration technique based on neural
networks was presented herein, trained by theore-
tical and experimental steering vectors. We find that
the ADALINE neural network provides better—or

very similar—results on average than all the other
types of calibration techniques while being easy to
implement in real-time. After many experimental
trials it seems to always converge experimentally to
the global minimum. The two other types of neural
networks seem to be too non-linear for this
problem, while being 1—longer to train (MLP) or
2—having many more neurons (RBF). Also, experi-
ments have shown that branch-to-branch errors are

ARTICLE IN PRESS

0 5
0

35

5

10

15

20

25

30

ADALINE
MLP
RBF
G

� (degrees)

P
m

u
s
ic
(�

) 
(d

B
)

� (degrees)

P
m

u
s
ic
(�

) 
(d

B
)

0 5
0

2

4

6

8

10

12
ADALINE
G

–10 –5–15–20

–10 –5–15–20

Fig. 15. Pseudospectrum obtained via the MUSIC algorithm

with calibrated data of uncorrelated sources at �11� and �6�

using various calibration techniques: (a) all techniques, (b) two

best techniques only (ADALINE and G matrix).

0 5 10

0

5

10

15

20

25

30
ADALINE
MLP
RBF
G

� (degrees)
P

m
u

s
ic
(�

) 
(d

B
)

P
m

u
s
ic
(�

) 
(d

B
)

0

2

4

6

8

10

12
ADALINE

G

–10 –5
–5

–15

0 5 10

� (degrees)

–10 –5–15

Fig. 16. Pseudospectrum obtained via the MUSIC algorithm

with calibrated data of uncorrelated sources at �5� and �0�

using various calibration techniques: (a) all techniques, (b) two

best techniques only (ADALINE and G matrix).

H. Bertrand et al. / Signal Processing 88 (2008) 1152–11641162



Author's personal copy

more critical for the performance of DOA algo-
rithms than the I/Q one in an experimental context.

Moreover, the real-time capacity of the better
algorithm, based on ADALINE neural networks,
will be tested with a VLSI implementation with a
new setup currently being developed comprising 3
antenna arrays of 8 elements equipped with FPGAs
and DSPs for real-time signal processing. This new
setup will allow us to obtain more results in
different cases (e.g. various antenna array config-
urations, training grids with different angular
spacings, etc.) to generalize the behavior of the
algorithm facing the selection of different para-
meters and derive practical insights with respect to
the desired resolution and the variability of the
array response in certain specific directions. Also, a
more exhaustive study implying Monte Carlo
simulations will permit us to obtain the perfor-
mance statistics and compare them with other
calibration methods.
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