IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 10, OCTOBER 2006

Transactions Briefs

1147

Highly-Parallel Decoding Architectures for
Convolutional Turbo Codes

Zhiyong He, Paul Fortier, and Sébastien Roy

Abstract—Highly parallel decoders for convolutional turbo codes have
been studied by proposing two parallel decoding architectures and a design
approach of parallel interleavers. To solve the memory conflict problem of
extrinsic information in a parallel decoder, a block-like approach in which
data is written row-by-row and READ diagonal-wise is proposed for de-
signing collision-free parallel interleavers. Furthermore, a warm-up-free
parallel sliding window architecture is proposed for long turbo codes to
maximize the decoding speeds of parallel decoders. The proposed architec-
ture increases decoding speed by 6%-34% at a cost of a storage increase
of 1% for an eight-parallel decoder. For short turbo codes (e.g., length
of 512 bits), a warm-up-free parallel window architecture is proposed to
double the speed at the cost of a hardware increase of 12%.

Index Terms—Decoder, interleaver, parallel architecture, turbo code.

I. INTRODUCTION

Turbo codes [1] have received a lot of interest because of their ex-
cellent performance. To apply turbo codes in high-speed digital com-
munications, such as in broadband wireless access based on the IEEE
802.16 standard supporting data rates of up to 70 Mb/s, and in fourth
generation cellular systems, which are expected to provide a data rate
ranging from 20 to 100 Mb/s for high mobility, high throughput of turbo
codes is a critical issue. Since turbo decoders inherently have a large la-
tency and low throughput due to the iterative decoding process, highly
parallel decoding architectures are required to achieve speed-up of an
order of magnitude.

This paper discusses several key problems in the implementation
of highly parallel decoders. One of the most immediate problems
is memory conflict during decoding [2], where several component
decoders simultaneously get access to the same memory module when
reading (writing) the extrinsic information from (into) the memory
modules. To avoid collisions in accesses to the memory modules,
this paper presents an efficient approach for designing collision-free
parallel interleavers in which data is written row-by-row and read
diagonal-wise.

The second problem in the implementation of a highly parallel de-
coder is concerned with limiting both the hardware cost and the de-
coding delay of the decoder when employing many component de-
coders. In order to reduce computational complexity, the maximum

Manuscript received October 28, 2005; revised December 8, 2005 and May
10, 2006. The material in this paper was presented in part at the IEEE Inter-
national Symposium on Circuits and Systems, Kobe, Japan, May 23-26, 2005,
and the Canadian Workshop on Information Theory, Montreal, Canada, June
6-8, 2005. This work has been supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC), by Le Fonds québécois de
la recherche sur la nature et les technologies (FQRNT), and by the Canadian
Microelectronics Corporation (CMC) under its System-on-Chip Research Net-
work (SOCRN).

The authors are with the Department of Electrical and Computer Engineering,
Laval University, Quebec City, QC G1K 7P4, Canada.

Digital Object Identifier 10.1109/TVLSI.2006.884172

read column-by-column
[oT6] 1] 7] 2]8]3]9[4]10]5]11]

[o]1]2]3]4]5]6[7[8][9]10]11]
Sub-block 1 Sub-block 2

(a)
read diagonal-wise
[OT7T2ToTaTT1[6[1[8]3[10[5]

= Collision-free

[0TTT2T3T4l56[7]8[9 10 1]
Sub-block 1 Sub-block 2

(b)

Fig. 1. (a) Interleaver in collision. (b) Collision-free interleaver.

a posteriori probability (MAP) algorithm [3], which is used for de-
coding convolutional turbo codes is generally implemented in the log-
arithmic domain, resulting in the so-called log-MAP algorithm. In an
M -parallel decoder based on the log-MAP algorithm, an information
block is divided into M sub-blocks which are assigned to A compo-
nent decoders. To initialize the path metrics in each sub-block, these
component decoders typically have to perform a warm-up phase which
consumes a few clock cycles at each iteration (e.g., [4]). However, the
warm-up phase reduces the throughput substantially when the number
of sub-blocks is large.

This paper proposes two warm-up-free parallel architectures for de-
coding short and long turbo codes. A complete analysis of the two ar-
chitectures for various code lengths is given based on the 8-state turbo
code specified by both the 3GPP standard [5] and the IEEE 802.16 stan-
dard.

This paper is organized as follows. Section II describes in detail
the approach for designing highly parallel interleavers. Section III
proposes warm-up-free sliding window (SW) architectures for highly
parallel decoders and then compares BER performance and decoding
speeds of the warm-up-free SW architectures with that of the conven-
tional SW architecture. Section IV presents a warm-up-free parallel
window architecture for implementing highly parallel decoders with
short code lengths. Finally, Section V concludes this paper.

II. PARALLEL INTERLEAVER DESIGN

A. Collisions in a Highly Parallel Decoder

To observe the problem of memory conflict in a parallel decoder,
Fig. 1 illustrates an example for an interleaver having a block length of
12 bits. In a two-parallel turbo decoder, each block is divided into two
sub-blocks, each consisting of 6 bits. Let 12 bits be written row-by-row
into a 2 X 6 matrix. Fig. 1(a) shows the designed interleaver when
the bits are read column-by-column from the matrix. The solid arrows
which show the mapping of the second bits in two sub-blocks, highlight
an obvious collision. Indeed, the component decoders have to WRITE
the data into the same storage module after decoding the second bits.

Collisions in a highly parallel decoder are further analyzed by
using two commonly-used approaches to the design of interleavers
for turbo codes, the so-called S-random interleaver (e.g., [6]) and the
interleaver specified in the 3GPP standard [5]. Let the input signals

1063-8210/$20.00 © 2006 IEEE

Authorized licensed use limited to: BIBLIOTHEQUE DE L'UNIVERSITE LAVAL. Downloaded on July 24,2010 at 15:54:27 UTC from IEEE Xplore. Restrictions apply.

1148

and the extrinsic information be stored in a series of modules in which
each module has 32 addresses for storage. The number of collisions
is defined to be m — 1 when m component decoders attempt access
simultaneously to a given memory module. When the S-random in-
terleaver with a block length of 1024 is used, the number of collisions
increases from 45 for a four-parallel decoder to 514 for a 32-parallel
decoder. On the other hand, the number of collisions increases from
67 for a four-parallel decoder to 424 for a 32-parallel decoder when
the 3GPP interleaver with a block length of 1024 is used. To avoid
collisions, collision-free management of these modules can be per-
formed by adding small buffers to assist memory accesses [7]. This
approach is adequate for low-degree parallel decoders, e.g., M < 4.
For highly-parallel decoders, a collision-free parallel interleaver is
needed.

B. High-Performance Design of Collision-Free Interleaver

The basic principle behind the design of collision-free parallel in-
terleavers is illustrated in Fig. 1(b) which shows a collision-free in-
terleaver with a block length of 12 bits. By writing row-by-row and
reading diagonal-wise, the data at a given position relative to the be-
ginning of a sub-block is mapped to the same position within another
sub-block. The solid arrows in Fig. 1(b) show a collision-free map-
ping of the second bits in two sub-blocks. The collision-free approach
shown in Fig. 1(b) by reading diagonal-wise, does not optimize inter-
leaver spread which guarantees a good performance of turbo code. To
maximize the overall weight of a code word, the interleaver of a turbo
code should associate a small weight sequence from one component
encoder with a large weight sequence from the other component en-
coder, i.e., the interleaver should make the duo-distance, defined as [8]

d(ni,n2) = |n1 — no| + |7(n1) — 7(n2)| (1)

between position 77 and position n. as large as possible, where m(n1)
and 7(n2) are the interleaved positions of position 7y and position 72.
Then, the spread associated with position n; is

D(ny) =

min
n2,n2#nl

[d(n1,n2]. (2

Likewise, the overall spread is defined as
D= miln[D(nl)] 3)

Based on the previous discussion, we propose a two-level mapping
approach for designing high-performance and collision-free parallel in-
terleavers. Let an M -parallel decoder be used to decode an information
block of length M x W = N, where each component decoder de-
codes W bits. After NV information bits are written row-by-row into an
M x W matrix, the two-level mapping process is performed in three
steps described as follows.

Step 1) Bottom-Level S-Random Mapping: In order to increase the

randomness and the spread of the designed interleaver, the
S-random approach is used to interleave the M sub-blocks
and interleave W bits within each sub-block.

Step 2) Top-Level Collision-Free Mapping: Assume that the ith in-
formation bit in the jth sub-block is mapped to the i'th
information bit in the j'th sub-block, i.e., the information
bit at position n = j X W 4 i is mapped to position
n' = n(n) = j' x W + i’ The top-level mapping func-
tions are expressed as

il = ’/Tm/(i) (4)
J = ([+ jlar) ®)

where v and 7, are the bottom-level mappings obtained

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 10, OCTOBER 2006

-1 —— 3GPP
—— S-random
a 2F —9— M=8
o —— M=16
-
= 3
2
(0]
: 4k ,
o
=
_8 S 1
=
Bk ,
05 1 15 2 E N
’ ‘ b 0

Fig. 2. BER at the tenth iteration for turbo code with a code rate of 1/2 and a
block length of 1024 bit. Four interleavers are compared.

in the first step for the W information bits and the M sub-
blocks, respectively. [x] denotes modulo-rn arithmetic.

Step 3) Inter-Sub-Block Collision-Free Swapping: Calcu-

late the spread D(n) associated with position n
(n = 0,1,2,...,N — 1) and the overall spread D
according to (2) and (3). Then perform inter-sub-block
swapping for all positions n with D(n) < (D + 1) as
follows.

Let the spread of the ith information bit in the jth sub-block be of a
value less than (D + 1),ie., D(n) < (D+1)andn = j X W + 4.
Swap this bit with the ¢th information bit in the j'th sub-block, where
j =0,1,...,M— 1and j' # j. After swapping, the overall spread
D is calculated according to (3). If the value of D is decreased, this
swapping is rejected.

The inter-sub-block swapping is repeated several hundred times in
order to obtain a high spread. Since the swapping process is much faster
than the selection process in the S-random approach, the proposed ap-
proach designs a collision-free parallel interleaver with a given value
of D within a considerably smaller time than the dividable interleaver
[9] in which the S-approach was employed to design a parallel inter-
leaver by adding collision-free constraint.

C. Bit Error Rate (BER) Performance Analysis

We performed simulations for the eight-state turbo code described
in the 3GPP standard for a code rate of 1/2 and an interleaver length of
1024, assuming an AWGN channel and BPSK modulation. The BER
at the tenth iteration versus the signal-to-noise ratio (SNR) per bit E,
/Ny are compared in Fig. 2 for the S-random interleaver, the 3GPP
interleaver, the eight-parallel interleaver (M = 8) and the 16-parallel
interleaver (M = 16), respectively. The performances of the proposed
collision-free parallel interleavers are competitive with the collision-
prone .S-random interleaver. Moreover, they slightly outperform the
interleaver specified by the 3GPP standard.

III. PARALLEL DECODING ARCHITECTURES WITH
SLIDING WINDOW APPROACH

Based on the principle that the Viterbi algorithm can start cold in any
state at any time, the sliding window (SW) approach has been proposed
to reduce the storage requirements of the path metrics (e.g., [10]). The
SW approach consists of dividing a block into several SWs and pro-
cessing each SW sequentially by using three path processors for the
preliminary backward path, the forward path and the backward path

Authorized licensed use limited to: BIBLIOTHEQUE DE L'UNIVERSITE LAVAL. Downloaded on July 24,2010 at 15:54:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 10, OCTOBER 2006

W:;'“ decoding decoding
,/' /
E N) 5 3 \ 4
> Forward path
N S
E [N—> E' N
N N N \
N h \‘
- B ry
« Z — " 2) ackward path
s F <
£ N £ N
- N - h
= @ O Store
z A4 EX forward path
|~ N
N o
Initialize
hd b forward path
0L W+2L L] W+
Time index Time index
(@) (b)

Fig. 3. Parallel decoding architectures with sliding window approach: (a) with
warm-up process and (b) without warm-up process.

computations, respectively. By storing the backward path metrics of
the previous iteration to avoid the preliminary backward path compu-
tation, only two processors are required [11]. In this section, we dis-
cuss parallel SW architectures. Since the SW approach with two path
processors proposed in [11], increases dramatically the storage require-
ment for long turbo codes, the SW approach with three path processors,
is favored throughout the section.

A. Warm-Up-Free Parallel SW Architecture

First, the conventional SW approach often used in the literature (e.g.,
[4]) is briefly reviewed. Shown in Fig. 3(a), an information block of
length 4 W is divided into 4 sub-blocks, where each sub-block consists
of W information bits. Then, each sub-block is divided into three SW's
for SW processing. In order to initialize the boundary distributions of
the path metrics for each sub-block, an overlapping of L information
bits between adjacent sub-blocks is arranged for the warm-up phase of
decoding. The length L for the warm-up phase is normally chosen to
be six times the constraint length of the code.

Since the length T of each sub-block decreases linearly with an in-
creasing number of sub-blocks, the warm-up process represents a large
portion of the decoding delay in a high-speed parallel implementation.
Instead of the warm-up process using two overlapped sliding windows,
a warm-up-free parallel SW architecture is proposed by using the for-
ward path metrics that were computed in the previous iteration of the
adjacent sub-block to initialize the path metrics for each sub-block
in the next iteration. Fig. 3(b) shows a four-parallel decoder with a
warm-up-free architecture. Shown by open circles in Fig. 3(b), the for-
ward path metrics of the last information bit in sub-block ¢ were stored
for initialization of the forward path metrics of sub-block (:+ 1) in
the next iteration. In the first iteration when there is no forward path
metrics from the previous iteration to use, the forward path metrics are
initialized to zero.

To analyze the performance of the proposed warm-up-free architec-
ture, we performed simulations by assuming binary phase-shift keying
(BPSK) modulation and an AWGN channel. The BER of three eight-
parallel decoders versus iterations are compared in Fig. 4 for the turbo
code with a block length of 1024 and a code rate of 1/2, where the
so-called warm-up-free parallel window (PW) architecture will be dis-
cussed in the next section. Since the forward path metrics are initialized
to zero in the first iteration, the performances of the warm-up-free ar-
chitectures degrade slightly for the first five iterations, i.e., at a given

1149

-1 T T
g -©- Warm-up SW
N —— Warm-up-free SW
—&- Warm-up-free PW
~ 2}
o
(=]
<
2
® 5|
o
o
=
4 b
E /N =1.6dB
5t b0 .
0 5 10 15

Number of iterations

Fig. 4. BER performances of eight-parallel decoders (A = 8) for turbo codes
with a block length of 1024 and a code rate of 1/2.

-1 T
-©- Warm-up SW
—¥— Warm-up-free SW
8- Warm-up-free PW
o 2f
o
=2
L
E o
[
5
@ 4l
2048
-5 .
0.5 1 1.5 2
Eb/N0

Fig. 5. BER performances of eight-parallel decoders (M = 8) for turbo codes
with a code rate of 1/2, and block lengths of 512, 1024, 2048, and 4096 bits.

iteration, warm-up architectures outperform slightly warm-up-free ar-
chitectures. No difference between warm-up and warm-up-free archi-
tectures is observed after five iterations.

The BER of three parallel decoders at the sixth iteration are com-
pared in Fig. 5 for turbo codes with a code rate of 1/2 and code lengths
of 512, 1024, 2048, and 4096. It is shown clearly that the warm-up-free
architectures do not affect the BER performance of the decoder.

B. Tradeoffs Between Speeds and Hardware Costs

To compare decoding speeds and hardware costs between warm-up
and warm-up-free parallel architectures, we implemented a series of
parallel decoders for the eight-state turbo code specified by the 3GPP
standard into Xilinx FPGA Spartan-3 device. The vector lengths of
each quantity within the algorithm were empirically optimized to mini-
mize complexity while maintaining close to optimal performance, e.g.,
the path metric was represented by a bit vector of 10 bits by employing
modulo normalization [12], and the extrinsic information was repre-
sented by a vector of 7 bits. Both the length of the warm-up window
and that of the sliding window were taken to be 32, i.e., L = 32 in
Fig. 3.

The decoding speeds of the parallel decoders with warm-up and
warm-up-free SW architectures are compared in Fig. 6 as a function
of the block size, where the decoding speed was calculated by using a
decoding clock frequency of 100 MHz and six decoding iterations. Few

Authorized licensed use limited to: BIBLIOTHEQUE DE L'UNIVERSITE LAVAL. Downloaded on July 24,2010 at 15:54:27 UTC from IEEE Xplore. Restrictions apply.

1150
80 T T T T
70} .
M=8
@ 60F 1
Q
Q
2 50l |
e
®
a 40} |
2 M=4
5 301 Wb —¥ |
o
®
o 20F .
10F —% warm-up-free |
. -~ warm-up
0 1000 2000 3000 4000
Block size (bits)

Fig. 6. Decoding speeds of four-parallel and eight-parallel decoders with
warm-up and warm-up-free architectures.

TABLE I
ToOTAL MEMORY COSTS IN KILOBITS FOR EIGHT-PARALLEL DECODERS WITH
SLIDING-WINDOW (SW) AND PARALLEL-WINDOW (PW) ARCHITECTURES

Block length (bits) 256 512 1024 2048 4096
Warm-up SW 275 339 467 723 123.5
Warm-up-free SW 28.1 345 47.3 72.9 124.1
Warm-up-free PW ~ 16.8 334 66.7 133.3 266.3

differences between the decoding speeds of the warm-up and warm-up-
free architectures are observed for the four-parallel decoders for the
long turbo codes of more than 1000 bits. However, for the highly par-
allel decoders with M = 8, the proposed warm-up-free architecture
increases the speed by 6%—34% compared to the warm-up architec-
ture.

The total memory costs for storing the input signals, the extrinsic
information and the path metrics in the eight-parallel decoders with
parallel SW architectures are listed in Table I. The warm-up-free SW
architecture increases the memory requirement by only 1% compared
to the warm-up SW architecture.

IV. WARM-UP-FREE PARALLEL WINDOW ARCHITECTURE

First considered in 1993 [13] and later modified in [14] to minimize
the storage of the path metrics, the parallel window (PW) architecture
consists of dividing a block into several windows and processing these
windows in parallel. Since the memories for storing the path metrics in
the PW architecture are proportional to the block length, there are few
real applications of this architecture for medium or long turbo codes.
In this section, an optimal version, the so-called warm-up-free PW ar-
chitecture, is proposed for implementing a highly-parallel decoder for
short turbo codes. The proposed architecture increases dramatically de-
coding speeds at the cost of a little increase in hardware.

Fig. 7 gives an example of a two-parallel decoding scheme with a
warm-up-free PW architecture. An information block of length 2W is
divided into two windows, where each window consists of W infor-
mation bits. Just like the warm-up-free SW architecture, the proposed
PW architecture uses the path metrics that were computed in the pre-
vious iteration to initialize the path metrics for each window in the next

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 10, OCTOBER 2006

Write Write

ﬂ Read ﬂ Read
/ Forward path
\ Backward path

O Store path metrics

LLR computation

Bit index
A

@ Initialize path metrics

Time index

Fig. 7. Warm-up-free parallel window architecture.

TABLE II
APPLICATION FOR TWO WARM-UP-FREE ARCHITECTURES

Parallel architecture SW PW

Sub-block length (bits) > 64 <64

iteration. During the time periods from ¢ = 0 to ¢ = W/4 and from
t = W/2tot = 3W/4, the path metrics of ¥¥/4 bits are computed and
stored in memory. From ¢t = W/4to t = W/2 and from ¢ = 3W/4
tot = W, the stored path metrics are READ and soft outputs are com-
puted. Since the memory is used twice, total memory requirements are
halved. It is interesting to note that the forward and backward path re-
cursions start and stop at the same bits. Thus, the forward and back-
ward path metrics of the bits that are computed last in each window are
stored to initialize the path metrics in the next iteration. For an M -par-
allel decoder, (M — 1) sets of forward path metrics and (M — 1) sets
of backward path metrics are stored. The simulation results shown in
Figs. 4 and 5 indicate that no difference between the BER performances
of the warm-up-free parallel SW architecture and the warm-up-free PW
architectures is observed.

Compared to the parallel SW architecture shown in Fig. 3(b), the
main benefit of the warm-up-free PW architecture is that no extra path
processor is needed for computing the preliminary backward path.
However, two processors for computing LLR outputs have to be used
for the PW architecture. By implementing a series of eight-parallel
decoders with PW architecture into Xilinx FPGA Spartan-3 device,
we observed that the proposed PW architecture increases the logic
resource usage by 12% with respect to the parallel SW architecture.

Since no preliminary computation is required for the forward and
backward path metrics, the warm-up-free PW architecture provides a
dramatic speed increase. For an eight-parallel decoder with a block
length of 512, the decoding speed is doubled from 33 Mb/s with a
warm-up parallel SW architecture to 61 Mb/s with a warm-up-free PW
architecture, assuming a decoding clock frequency of 100 MHz and
six decoding iterations. The decoding latency is decreased from 15.5
to 8.4 us.

Considering the tradeoff between hardware cost and decoding speed,
the warm-up-free PW architecture is a good candidate suitable for de-
coding short turbo codes, because of high decoding speed and low de-
coding latency. Since the total storage requirements in the warm-up-
free PW architecture listed in Table I increase with block length, the
warm-up-free parallel SW architecture is better suitable for decoding
long turbo codes. Table II summarizes the application of two warm-up-
free architectures for various sub-block lengths.

Authorized licensed use limited to: BIBLIOTHEQUE DE L'UNIVERSITE LAVAL. Downloaded on July 24,2010 at 15:54:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 10, OCTOBER 2006

V. CONCLUSION

We have proposed a novel approach, in which data is written
row-by-row into a matrix and read diagonal-wise, for designing
collision-free parallel interleavers. To improve the performance of
the designed interleaver, a random mapping and swapping scheme
has been used to augment the spread distance of the interleaver. The
proposed collision-free parallel interleavers are competitive with the
collision-prone S-random interleaver and slightly outperform the
interleaver specified by the 3GPP standard. To minimize the decoding
delay in a highly-parallel decoder, two warm-up-free parallel archi-
tectures, the parallel SW architecture, and the PW architecture, have
been proposed for long and short turbo codes, respectively. Compared
to the warm-up parallel SW architecture, the proposed warm-up-free
parallel SW architecture increases the speed by 6%—-34% at a cost of a
hardware increase of 1% for an 8-parallel decoder, while the proposed
warm-up-free PW architecture doubles the speed at a cost of hardware
increase of 12%.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. Int. Conf.
Commun. (ICC), 1993, pp. 1064-1070.

[2] A. Giulietti, L. van der Perre, and A. Strum, “Parallel turbo coding in-
terleavers: Avoiding collisions in accesses to storage elements,” Elec-
tron. Lett., vol. 38, no. 5, pp. 232-234, Feb. 2002.

[3] L. Bahl,J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol.
20, no. IT-2, pp. 284-287, Mar. 1974.

[4] Z. Wang, Z. Chi, and K. K. Parhi, “Area-efficient high-speed decoding
schemes for turbo decoders,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 10, no. 6, pp. 902-912, Dec. 2002.

[5]1 3GPP2 (3rd Generation Partnership Project 2) Specifications, [On-
line]. Available: http://3gpp2.com/

[6] S.Dolinar and D. Divsalar, “Weight distributions for Turbo codes using
random and nonrandom permutations,” Telecommun. Data Acquisition
(TDA) Progress Rep., vol. 42, no. 122, pp. 56-65, Aug. 15, 1995.

[7]1 Z. Wang, Y. Tang, and Y. Wang, “Low hardware complexity parallel
turbo decoder architecture,” in Proc. IEEE Int. Symp. Circuits Syst.,
2003, pp. 53-56.

[8] S. Crozier and P. Guinand, “High-performance low-memory inter-
leaver banks for turbo-codes,” in Proc. IEEE 54th Veh. Technol. Conf.,
2001, pp. 2394-2398.

[9] J. Kwak and K. Lee, “Design of dividable interleaver for parallel de-
coding in turbo codes,” Electron. Lett., vol. 38, no. 22, pp. 1362-1364,
Oct. 2002.

[10] A.J. Viterbi, “An intuitive justification and a simplified implementa-

tion of the MAP decoder for convolutional codes,” IEEE J. Sel. Areas

Commun., vol. 16, no. 2, pp. 260-264, Feb. 1998.

F. Raouafi, A. Dingninou, and C. Berrou, “Saving memory in turbo-de-

coders using the max-log-MAP algorithm,” IEE Collog. Turbo Codes

Dig. Broadcasting—Could It Double Capacity?, pp. 14/1-14/4, 1999,

(Ref. No. 1999/165).

[12] Y. Wu, B. D. Woerner, and T. K. Blankenship, “Data width require-
ments in SISO decoding with modulo normalization,” IEEE Trans.
Commun., vol. 49, no. 11, pp. 1861-1868, Nov. 2001.

[13] H. Dawid, G. Gehnen, and H. Meyr, “MAP channel decoding: Algo-
rithm and VLSI architecture,” in Proc. Workshop VLSI Signal Process.,
VI, 1993, pp. 141-149.

[14] A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architecture
with optimized memory size and power consumption,” in Proc. IEEE
Workshop Signal Process. Syst., 2000, pp. 265-274.

[11

1151

DTMOS Technique for Low-Voltage Analog Circuits

Mohammad Maymandi-Nejad and Manoj Sachdev

Abstract—In this paper, the application of dynamic threshold MOS
(DTMOS) technique for low-voltage analog circuits is explored. The body
terminal of PMOS transistors in bulk CMOS technology can be used
as the forth terminal to enhance the performance of low-voltage analog
circuits. To show the effectiveness of this technique, we have designed a
continuous time common mode feedback (CMFB) circuit for a sub 1-V
opamp and a new sub 1-V, 1-bit quantizer. A 0.8-V opamp with embedded
CMFB and a 0.8-V, 1-bit quantizer for low-voltage A3 modulators are
implemented in 0.18-pzm CMOS technology. The simulation results as
well as the measurement data of these blocks are presented in this paper.

Index Terms—1-bit quantizer, CMOS analog circuits, comparator, AX
modulator, dynamic threshold MOS (DTMOS), operational amplifier.

I. INTRODUCTION

in the CMOS technology, demands for lower supply voltages [1].
This is due to the very thin gate oxide in advanced technologies. In ad-
dition, in many applications such as implantable biomedical devices,
hearing aids [2], etc., the circuit should be operated with a miniature
battery. Often, commercial miniature batteries provide a voltage in the
range of 0.9 to 1.5 V with limited energy capacity [3]. In such appli-
cations, the volume and the weight of the battery is one of the primary
concerns. These concerns force analog circuit designers to look for
low-voltage, low-power circuit architectures and techniques. Reducing
the supply voltage in analog circuits is not trivial compared to digital
circuits. In particular, supply voltage reduction in analog circuits re-
duces its dynamic range which in turn, degrades the signal-to—noise
ratio (SNR) of signals. Moreover, as CMOS technology scales down
the output resistance of MOS transistors is reduced. As a consequence,
the maximum achievable gain from a MOS amplifier is reduced. Sim-
ilarly, reduced output resistance makes the design of supply indepen-
dent biasing network a challenging task. As a result, analog designers
must continuously find low-voltage circuit techniques in order to be
consistent with technology trends [4], [5]. In this context, the dynamic
threshold MOS (DTMOS) technique, which was originally used in dig-
ital circuits, has the potential to enhance the performance of a low-
voltage analog circuit [6].

In this paper, we show how the DTMOS technique can be helpful
in the design of low-voltage analog circuit blocks. We designed a
low-voltage, fully differential amplifier with a common mode feed-
back (CMFB) circuit and a low-voltage comparator, incorporating
the DTMOS technique in bulk CMOS technology [7], [8]. In the
case of CMFB, the DTMOS technique helps in reducing the circuit
complexity while not consuming extra power. Similarly, in the case
of the comparator, the DTMOS technique makes it possible to get a
rail-to-rail input range.

This paper is organized as follows. In Section II, an overview of the
DTMOS technique is given. The common mode feedback circuit and

T HE continuous trend toward smaller feature size for transistors

Manuscript received September 22, 2005.

M. Maymandi-Nejad is with the Electrical Engineering Department,
Ferdowsi University of Mashhad, Mashhad 9177948944, Iran (e-mail: may-
mandi @um.ac.ir).

M. Sachdev is with the Electrical and Computer Engineering Depart-
ment, University of Waterloo, Waterloo N2L 3G1, ON, Canada (e-mail:
msachdev@ece.uwaterloo.ca).

Digital Object Identifier 10.1109/TVLSI1.2006.884174

1063-8210/$20.00 © 2006 IEEE

Authorized licensed use limited to: BIBLIOTHEQUE DE L'UNIVERSITE LAVAL. Downloaded on July 24,2010 at 15:54:27 UTC from IEEE Xplore. Restrictions apply.

