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ABSTRACT

In several practical applications of data fusion and more precisely in object identification problems, we need to
combine imperfect information coming from different sources (sensors, humans, etc.), the resulting uncertainty
being naturally of different kinds. In particular, one information could naturally been expressed by a membership
function while the other could best be represented by a belief function. Usually, information modeled in the
fuzzy sets formalism (by a membership function) concerns attributes like speed, length, or Radar Cross Section
whose domains of definition are continuous. However, the object identification problem refers to a discrete and
finite framework (the number of objects in the data base is finite and known). This implies thus a natural but
unavoidable change of domain. To be able to respect the intrinsic characteristic of uncertainty arising from the
different sources and fuse it in order to identify an object among a list of possible ones in the data base, we
need (1) to use a unified framework where both fuzzy sets and belief functions can be expressed, (2) to respect
the natural discretization of the membership function through the change of domain (from attribute domain to
frame of discernment). In this paper, we propose to represent both fuzzy sets and belief function by random
sets. While the link between belief functions and random sets is direct, transforming fuzzy sets into random
sets involves the use of a-cuts for the construction of the focal elements. This transformation usually generates
a large number of focal elements often unmanageable in a fusion process. We propose a way to reduce the
number of focal elements based on some parameters like the desired number of focal elements, the acceptable
distance from the approximated random set to the original discrete one, or the acceptable loss of information.
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1. INTRODUCTION

For twenty years, uncertainty has been considered as an inherent part of fusion problems since information is
never perfect, nor precise, nor certain. Although uncertainty was considered first as a synonym of probability,
it appeared that many other aspects (kinds) of uncertainty cannot be captured by the concept of probability,
and thus this enhances some lacks of theory of probability. To overcome these lacks, new theories are born such
as fuzzy set theory, evidence theory, possibility theory, random set theory, rough set theory, etc. Even if each of
these theory can be applied to any problem involving uncertainty, none of them is better than another. Instead
they address different kinds of uncertainty thus they are not competitors but they rather complete each other.
For example, probability theory well suit to random data, where a probability distribution can be established,
whereas fuzzy set theory concerns vague or fuzzy data, i.e. where boundaries are not well defined.

In data fusion problems, we need to combine information coming from multiple and variate sources. Even if
the variety of the sources is probably a great asset, it can however induce another problem that is the choice of
the “best” theory to model the information. Depending of the features of the information source, the uncertainty
can be of different kinds and thus many different theories could be used. In order to take into account this
problem, some unifications among theories of uncertain reasoning are currently under study. A good candidate
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seems to be random set theory whose framework can represent most of the theories. A preliminary study on
this ability was this objective of a previous paper.!

In this paper, we consider the problem of target (object) identification using multiple sources of information.
Typically, these sources can be (1) measures devices such as radars (long and short range), ESM (Electronic
Support Measures), IFF (Interrogator Friend or Foe), but also (2) human sources such as opinions of expert
observing the scene. The first category of sources is well modeled by belief functions, however fuzzy set theory
better corresponds to the second category since it is naturally designed to model human language descriptions.
For example, an expert can affirm “the target is small’ or “the target has a quite low speed’, information specially
well represented by membership functions. Hence, here we propose to put in the random set framework both
belief functions and fuzzy membership functions in order to combine them for identifying the observed target.

Section 2 is dedicated to some theoretical basics first on random sets (section 2.1) and then successively to
evidence theory (section 2.2) and fuzzy sets (section 2.3). In each subsection, the representation of the theory
in the random set framework is given, and the modelization of information is described. In particular, the
change of definition domain for membership functions is mentioned in section 2.3.1. We approach the problem
of the approximation of the random set issued from the membership transformation in section 3. Indeed, the
number of focal elements involved by such a transformation is often unmanageable for a fusion process, hence
a reduction of this number is unavoidable. Finally, the mechanism of combination of belief functions and fuzzy
sets in the random set formalism is then described in section 4 through an example of application to target
identification, with three kinds of reports: ESM reports, Radar reports and expert opinions. Section 5 is the
conclusion.

2. THEORETICAL BASICS
2.1. Random set theory

The random set concept has been introduced in the early 70’s>? as a generalization of the random variable con-
cept: Random sets are random elements whose values are sets, whereas random variables are random elements
whose values are numbers. Hence, roughly speaking, random set theory may be viewed as a generalization of
random variables and vectors.

Let (2, A, P) be a finite and discrete probability space and let © be a finite discrete set. A random set X
is defined by a (multivalued) mapping X : Q — 29 where 2© is the power set of ©@. Any probability measure
defined by a probability distribution function f : 2® — [0, 1] such that

fA)=PX=4] vACO 1)
defines a random set & on ©. [X = A] is the event that a randomly selected subset of © be equal to the
particular subset A.
This probability distribution f entirely characterizes the random set. Also, it satisfies the same axioms as
every probability distribution:
Px=0]=0
0<PX=A4]<1 ,YACO
S Plx=4]=1 (4)

ACO
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From f we can define three other useful functions entirely characterizing the random set:

1. the implying functional Ry:

2. the hitting capacity Ty:



3. the inclusion capacity Py:
Py(A) = P[X C A] , VACO. (7

A simplified view of a random set X’ allows to represent it by a set of couples:
2N
X ={(4i,m)|4; CO,m; = P[X = 41,1 <i <2V,) “m; =1}, (8)

i=1
where N = card(©).

Recently, Goodman, Malher and Ngyuen*® among other authors presented random set theory as a unifying
paradigm for most of theories of uncertain reasoning. It appears that at least probability theory, Dempster-
Shafer theory, possibility theory, fuzzy sets theory and conditional events algebra can be represented in the
random set framework. Hence, such an unification offers a systematic methodology for the fusion of information
involving various types of uncertainty. In this paper, we restrict our discourse to evidence theory and fuzzy sets
theory.

2.2. Evidence theory

Evidence theory is a powerful tool to deal with imprecise and uncertain information, developed by Dempster®
and later on by Shafer.” This theory is often described as an extension of probability theory as it lies on the
power set, of the universe of discourse instead of the set itself. Among other properties, the additivity axiom of
probability theory is replaced by a super-additivity one.

Let © be the frame of discernment, containing N objects, hypotheses, etc. A Basic Probability Assignment
(BPA) is a mapping defined as m : 2© — [0, 1] that must satisfy the following conditions:

m(f) =0 9)
0<m(A) <1 ,vVAe2® (10)
dom(4) =1 (11)
ACO

m(A) represents the degree of belief (confidence) that someone assigns strictly to A. A subset A with a non-null
mass is called a focal element (of m).

From a BPA m, we can define three other functions from 2 to [0, 1]:
1. the belief function Bel:
Bel(A) = > m(B) ,VAC®. (12)

BCA

Bel(A) represents the total belief that someone could assign to the subset A.

2. the plausibility function Pl:

Pl(A)= > m(B) ,VACe. (13)
BNA#(

P1(A) represents the maximal belief someone could assign to A (the belief to which someone finds A
credible).

3. the commonality function, Q:
Q4)=> m(B) ,vACH. (14)
ACB

If the mass m(A) is considered to be the probability degree that can move freely to any subset of A, then
the commonality degree Q(A) is viewed to be the total degree of probability that can move freely to any
subset of A.



Between the basic probability assignment, the belief function, the plausibility function and the commonality
function there exist bijective transformations:

m(A) = > (-1)*"PIBel(B) ,VACO (15)
BCA
Bel(A)=1-PI(A) ,VAC®O (16)
Bel(4) = Y (-1)PIQ(B) ,vAC®O (17)
BCA

where |A| = card(A4) and A is the complement of A relatively to ©.

Let m; and mo be two BPAs defined on the same frame of discernment @. Combining information from the
two BPAs is frequently done using Dempster’s rule of combination,® which is a conjunctive rule:

Z my (B)TRQ(C)

my @ ms)(A) = —B0¢=4 , VA C . 18
( ) 1— > mi(B)ma(C) e

BNC=0

The weight of conflict between two BPAs is defined by:

Con(ml,mg):—log(l— 3 ml(B)mg(C)). (19)
BNC=0

and two BPAs are totally in conflict if Con(m;,ms) = 4o00. In this case, Dempster’s combination cannot be
applied.

2.2.1. Representing information in the evidence theory

Let © = {601,02,...,0n} be a set of objects, and let each object having a set of known parameters. A sensor
provides information such as “the observed object is a ship with a degree of confidence of 0.8”. This kind of
information can be modeled in the evidence theory by a BPA m, as for example *:

Ay ={0 € ©|0 is a ship} m(4;) =m; =0.8
AQ =0 m(AQ) =my = 0.2

2.2.2. Random set representation for the belief functions

It can be proved (Nguyen,® Quinio and Matsuyama®) that the hitting capacity, the implying functional and

the inclusion capacity from the random set theory are equivalent respectively to the plausibility function, the
belief function and the commonality function from the evidence theory, the probability distribution function f
being thus equivalent to the BPA m:

f(4) = P[X = A] = m(4) (20)
Rax(A) = P[A C X] = Bel(A) (21)
Ty(A) = P[X N A # 0] = PI(A) (22)
Px(A) = PLX C A] = Q(4) (23)

Moreover, Dempster’s rule of combination (18) is a particular case of the intersection of random sets (when the
random sets are independent):

Tr,ox,(A) = P(XI N Xy = AJX; N Xy £ 0),VA € 2°. (24)

The evidence theory is a simplified view of the random set theory (Nguyen® and Nguyen and Wang!®) and the
notation (8) shows the relation between the two mathematical models.

*Note that here m; and mo are the two values of the same BPA m and must not be confused with two distinct BPAs,
as used in (18)



2.3. Fuzzy set theory

Fuzzy set theory was developed by Zadeh'! to model vague information such human language descriptions
(“small, large, quick, young”), concepts that cannot be defined by an interval with strict limits. A fuzzy set
is thus a set whose boundaries are not precise, not well defined, i.e. fuzzy. It is a more general concept of
the classical set: the membership of an element to a fuzzy set is not described by a Boolean function (as it is
the case for a classical set), but by real values between 0 and 1, in general (note that it can also be any other
function). The theory of fuzzy sets is thus a generalization of the classical theory of sets.

In classical set theory a subset A of the frame of discernment O is represented by a membership function:

nA - 0 — {0, 1}
1 if e A

OER S Vo € 0. (25)
0 elsewhere

A is referred to as a crisp set or a classical set.

A fuzzy set, denoted by A C 0O, is defined by a membership function which can take its values in the [0, 1]
interval:

ua(f) €[0,1] Vo € 6. (26)
2.3.1. Representing information using the fuzzy sets theory
Let © = {61,6,,...,0n} be a set of objects, and let each object have a set of known parameters:
0; = [zi, 28, ... 25T,

Let consider that the information concerning the parameter x; is vague and let D; be the definition domain of
this parameter (z; € D;). D; can be discrete or continuous, ordered or not. Let A C D; be the fuzzy set with a
membership function p14(2;). The fuzzy set A C D; must be transformed into a fuzzy set of B C O relatively to
the parameter x;. After this transformation, the resulting subset is no more ordered nor continuous according
to the parameter z;:

1 (8:) = pa(a?). (27)

For example, the parameter x; could correspond to the length of the objects from © and the fuzzy set
A C Dj could correspond to small length. In this case, D; is continuous and ordered. Each value from the
interval [0, 300] meters possesses a membership degree to the fuzzy subset small length (see left graphic of the
figure 1). Using the values x; of the parameter z; for each object 8; of ©, we construct a new fuzzy set B C ©
where up(6;) represents the degree of membership of each object of © to the fuzzy set objects with small length
(see right graphic of the figure 1).

Membership of the fuzzy subset "small length” Membership of the fuzzy subset "objects with small length"

(0]

. . . : o
o 50 100 150 200 250 300 (o) 20 40 60 80 100 120 14
x O Dj (in meters) Object from the data base (6[10)

Figure 1: Membership of the fuzzy set “small length” and of the fuzzy set “objects with small length”



2.3.2. Random set representation for membership functions

In,'2 a formal connection between random sets and fuzzy sets is proposed, fuzzy sets being considered as
equivalence classes of random sets, “one-point coverages” of random sets.

Let (€2, A, P) be a probability space and © be a finite space. Then, with each random set X" from  to 2°
we can associate a membership function py : © — [0,1] of a fuzzy set on O, such that

px(@) =P e X),¥oeco (28)

ux(0) is the one-point covering function of X.

In practice, the a-cut representation of a fuzzy set is used to construct the corresponding random set. Let
A C O be a fuzzy set defined by the membership function 4. An a-cut of A is the subset A, of © such that:

Ao = {0]pa(0) > a}- (29)

Hence, A can be represented by a stack of a-cuts.

Suppose the fuzzy set is defined on a discrete domain and let 0 < a1 < as < -+ < ayr < 1 be the distinct
values of the membership function pyg (M < card(0©)). Then, the fuzzy set is defined in the random set theory
using the a-cut representation:

Ai ={6lpa(0) > i} Vi, 1<i<M (30)
Q; — Q1 . .
4= 2<i< M

mz‘_{aaM vii2sis (31)
21 i=1
anm

This representation exactly defines A.

However, M is often too large and we need to restrict the number of focal elements to only My <« M
so that Dempster’s rule of combination can be applied without algorithm explosion (i.e. using a reasonable
computation time).

3. APPROXIMATION OF MEMBERSHIP FUNCTIONS

The fusion process using Dempster’s rule is often computationally highly expensive because the transformations
of the fuzzy memberships into the random set model involve too many focal elements. Indeed, let consider the
transformation based on the a-cuts described by equations (30) and (31). Let call My the desired number of
focal elements of the random set built from pa, My < M. To reduce the number of focal elements, we must
find a new set of a-cuts (0 < oy < ay < --- < ap, < 1) differing from the original (and “optimal”) one. The
random set representation becomes then:

Ai ={0lpa(f) > a;} Vi, 1<i< M (32)
m; = apg, VZa QSZSMO (33)
& i=1
ap,

where

(34)

any = maxtus(6))6 € O}
a; = max{ué(ﬁ)w €06 \ Ai+1} Vi, 1<i< My—1

When no approximation is made My = M and a; = o;,1 <1 < M.

Hence, using (32) and (33) instead of (30) and (31) allows to avoid an algorithm explosion. However, this
approximation can depend on different parameters such as the a-step (difference between two a-levels) or more
generally the level set (i.e. the set of a-cuts), or the desired maximum number of focal elements, My. In this
work, we simply consider constant a-steps (we will denote by «a), and more general level sets will be the aim of



future studies. In this particular case, the constant « is related to the maximum number of focal elements of
the approximated representation by:

My = Pw (35)

To compare differences between the random sets obtained without any approximation and those obtained
using an a-cut approximation we propose to use a distance between the two random sets, especially that
proposed by Jousselme and al. in'® 14 for the Dempster-Shafer theory that can easily be transposed to the
random set theory. Let X} and X be two random sets defined on ©, then dgs(X;, X2) quantifies the distance
between them (in the 2° space) with:

1 1 1
drs(Xy, Xs) :\/5 <X =Xy, X — Xy > = \/5 <X, > —< AL A >+§ < Xy, Xy > (36)

where:
card(AN B)

card(AU B)’ S

<X, X >= Y Y PlX = A|P[X, = B]
ACO BCO

In table 1 we introduce three vague pieces of information initially modeled by the fuzzy set theory. To
simplify the fusion process, the number of focal elements must be reduced for each one of these information.
Thus each fuzzy set must be approximated by a random set which is as close as possible (as desired) to the
representation without approximation. Let X be the random set representation without approximation of the
information at instant ¢, t € {3,4,7}. Let X be the random set representation approximated using this level
set (for information of instant t).

Distance between the representation with and without
approximation of the information n° 7

o
o
T
|

0.1 0.08 .

Figure 2: Distance between XY and X&

Figure 2 presents the distance between XY and X®. The case a = 1 corresponds to the distance between
X2 and the total ignorance (Xg, the random set with probability distribution such that P[Xg = ©] = 1). If we
approximate a fuzzy set by Xg, this information is eliminated from the fusion process (total ignorance is the
neutral element for Dempster’s combination).

Hence, for any imposed threshold on the distance dgs (X2, X#) we can find a maximum value of a for which
the approximation is never farer from the optimal random set X? than this threshold. In our example, we chose
a threshold equal to 15% of drs(Xe, Xf), the distance corresponding to the worse approximation. On figure
2, drs(Xeo, X&) = 0.54, the threshold is around 0.08 which gives a maximum value of @ = 0.18 and thus a
minimum number of focal elements to be used in the approximation is My = 6.



4. COMBINING BELIEF FUNCTIONS AND MEMBERSHIP FUNCTIONS IN
RANDOM SET THEORY

Here, we consider the problem of target identification using a priori information stored in a database containing
N = 142 objects. Each object has a set of known characteristics such as the type, the subtype, the physical
dimensions (length, width, height, RCS front, RCS top, RCS side), the minimum and the maximum cruise
speeds, the maximum cruise altitude, the list of emitters, etc. Depending on the source used, the information
can be best modeled in one or the other theory. In particular, an expert opinion can typically be “the target has
a small length” and is more naturally expressed in the fuzzy set theory. However, an ESM reporting an emitter
on board of the observed target is better expressed by a belief function, for example with two focal elements
being (1) the set A of all objects owning this emitter, and (2) the set of all target ©. Such a belief function
traduces the fact that the ESM report can be believed to a degree m(A) and that the ESM ignores that the
emitter exists (with a degree m(©)).

We use an example of an identification scenario where the three available sources are a radar, an ESM and
a human agent, producing 10 pieces of information presented in the table 1.

Instant | Source of information Information Initial modeling theory
1 RADAR the target is a ship evidence theory
2 ESM the emitter 44 is on board evidence theory
3 Human agent the size viewed from the top is little fuzzy set theory
4 Human agent the size viewed from the side is medium fuzzy set theory
5 ESM the emitter 77 is on board evidence theory
6 ESM the emitter 56 is on board evidence theory
7 Human agent the length of the target is small fuzzy set theory
8 ESM the emitter 47 is on board evidence theory
9 ESM the emitter 55 is on board evidence theory
10 ESM the emitter 103 is on board evidence theory

Table 1: Information used in the identification scenario test.

First of all, pieces of information from the table 1 are represented in an initial theory (evidential or fuzzy set
representations) using a priori information from the database. Information modeled in the evidence theory is
represented by a couple (0.8,0.2) which means that a mass of 0.8 is associated to the set A of propositions from
O and a mass of 0.2 is associated to the ignorance. Secondly, we transform this information into the random set
formalism, using notation (8) and equations (30) and (31). The result of the fusion process after 9 combinations
using Dempster’s rule expressed in the random set formalism (24) is presented in figure 3. The left graphic

Final Information Temporal Evolution
1l i
0.9r 4
0.8 q
0.7r b
! \ --- 1. Object 11
@0.6* b &0.6f \\ ‘\ 2. Object 18 7
L | >< \ —— 3. Object 19
H0.5 = . : -.— 4. Object 63
0.4f 7 0.4 \ \ B
\ \
0.3+ 4 . |
0.2} 1 0.2} L ToTTTTTT SN -
o.1f g 4 N
o 1 A ‘ ‘ ‘ A A ‘ o A \ ‘ ‘ ‘ s
[0} 20 40 60 80 100 120 140 1 2 3 4 5 7 8 9 10

6
Index of the objects from the data—base Instant of data fusion
Figure 3: Target identification using random set information fusion

shows the hitting capacity of the final random set for each object (singleton) of the database. The right graphic



presents the temporal evolution (during the fusion process) of the hitting capacity for the most plausible objects
from the database. The object has been finally identified as the object number 19 of the database, but object
11 was the most plausible until instant 6, corresponding to an ESM report.

By introducing the approximated information into the data fusion process, the complexity of the process
(computation time) is considerably decreased. Table 2 compares the different parameters of the data fusion
process (the final number of focal elements, the number of flops used in the data fusion process, the distance
between the approximated information and the information without any approximation). This table shows that

Approximation « | Final number of focal elements | Fusion duration (in flops) | Distance
0.000 2658 = 3.5 10° 0
0.025 431 =~ 14107 0.005
0.075 175 =~ 1.4 10° 0.003
0.100 113 =~ 5.010° 0.004
0.150 95 =~ 3.4 10° 0.005
0.200 51 =~ 9.2 10* 0.007
0.300 47 ~ 7.0 10% 0.007
0.400 37 =~ 4.7 10% 0.007
0.500 29 ~ 25 10* 0.010
1.000 11 = 5.0 10° 0.043

Table 2: Comparison of different parameters of the data fusion process

using a = 0.2 for the three approximations of the membership functions (instants 3, 4 and 7), the final number
of focal elements (after 9 combinations) is 51 (instead of 2658 without any approximation) and the computation
time corresponds to 9.2 10* flops (compared to 3.5 10?). Finally, figure 4 shows the hitting capacities of object
19 when different approximations for fuzzy sets are used. We note the close values between the hitting capacities
obteined without approximation and using 6 focal elements (corresponding to a = 0.2).

Object 19 : Temporal Evolution

1 U
0.8 B
@ 0.6 9
>
= __ Fusion without approximation
0.4 Fusion with approximation of the 4
~ fuzzy information (a=0.2)
Fusion with no fuzzy information (a=1)
0.2 B
(o] . .
1 2 3 8 9 10

4 5 6 7
Instant of data fusion

Figure 4: Hitting capacity of target 19 for different approximations of fuzzy sets

5. CONCLUSION

In this paper, we use the random set formalism to combine information coming from electronic devices and from
human sources. In the first case, information is well modeled by belief functions, whereas experts opinions are
better naturally modeled by fuzzy sets. While the transformation of belief functions into random set formalism
is trivial, the transformation of fuzzy sets involves some discretization (using the a-cuts) and leads to a high
number of focal elements (i.e subsets with non-null probability of occurrence). To reduce this number of subsets
and avoid the explosion of the algorithm, we propose to quantify the approximation of the random set produced
by the original fuzzy set by a distance between the “optimal” random set (i.e without approximation) and



different approximations (different a-cuts). On a scenario test, we show that the number of subsets can be
significantly reduced without any significant loss of performance. This research must then be extended to larger
tests based on new approximations (level sets) support by some measures of performances.
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