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A Class of Irregular LDPC Codes with
Low Error Floor and Low Encoding Complexity
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Abstract— In this letter, we propose a class of irregular
structured low-density parity-check (LDPC) codes with low error
floor and low encoding complexity by designing the parity check
matrix in a triangular plus dual-diagonal form. The proposed
irregular codes clearly lower the error floor and dramatically
improve the performance in the waterfall region of error-rate
curves. Being characterized by linear encoding complexity, the
encoders of the proposed codes attain throughputs over 10 Gbit/s.

Index Terms— Low density parity check codes, error floor,
linear encoding.

I. INTRODUCTION

STRUCTURED low-density parity-check (LDPC) codes
constructed from circulant permutation matrices have re-

cently received a lot of interest (e.g., [1] - [3]) because of
their simple structures which dramatically reduce the storage
requirements associated with the parity check matrix in en-
coders and decoders. By choosing proper degree distributions,
irregular LDPC codes with non-constant column degrees and
non-constant row degrees which outperform regular LDPC
codes are capable of transmitting information over noisy
channels with a capacity close to the Shannon limit [3] - [9].

In this letter, we propose an efficient approach to the
design of high-performance irregular structured LDPC codes
based on circulant permutation matrices with a bit-error-rate
(BER) floor below 10−9. Since the parity check matrix has
a triangular plus dual-diagonal form, the proposed codes can
be encoded with the same low encoding complexity as repeat-
accumulate codes (e.g. [9]). The encoders attain throughputs of
more than 10 Gbit/s by using only several hundred exclusive-
OR (XOR) gates. They are suitable for high-speed applications
in the Gbit/s region, such as long-haul optical channels and
Gigabit Ethernet.

II. CODE CONSTRUCTION

We propose a class of irregular LDPC code represented by
the following parity-check matrix H = [HS|HP ] in which
each column and each row have non-constant degrees, i.e.
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HS =

⎡
⎢⎢⎢⎣

H1, 1 · · · H1, L−J

...
. . .

...
HJ−1, 1 · · · HJ−1, L−J

HJ, 1 · · · HJ, L−J

⎤
⎥⎥⎥⎦ , (1)

HP =

⎡
⎢⎢⎢⎣

I · · · 0 0 0
...

. . .
...

...
...

HJ−1, L−J+1 · · · HJ−1, L−2 I I(q − 1)
HJ, L−J+1 · · · HJ, L−2 I I

⎤
⎥⎥⎥⎦ ,

(2)
where 0 and I are the q×q null matrix and the identity matrix,
respectively, and I(q − 1) is a q × q circulant matrix obtained
by circulating the rows of I to the right by (q − 1) places.
For 1 ≤ j ≤ J and 1 ≤ l ≤ L, the sub-matrix Hj,l in
position (j, l) within H is either a null matrix or a circulant
matrix obtained by circulating the rows of I to the right by
Cj,l places, i.e. Hj,l ≡ I(Cj,l). The code defined by H has a
block length of n = q×L and a code rate of R = (1−J/L).
The shifting coefficient Cj,l is chosen randomly in such a way
as to avoid short cycles in the code’s Tanner graph. To avoid
the 2i-cycle, a necessary and sufficient condition is [2]

m∑
k=1

(Cjk,lk − Cjk+1,lk) �= 0 mod q , (3)

for all m, 2 ≤ m ≤ i, all jk, 1 ≤ jk ≤ J , all jk+1, 1 ≤
jk+1 ≤ J , and all lk, 1 ≤ lk ≤ L, with j0 = jm.

An important contribution in this letter is that four sub-
matrices which compose a dual-diagonal matrix are used
at the lower-right corner of HP to lower the error floor
and reduce encoding complexity. To illustrate why the four

sub-matrices

[
I I(q − 1)
I I

]
can compose a dual-diagonal

matrix, Fig. 1(a) shows an 8 × 8 dual-diagonal matrix which
is reorganized into four 4 × 4 sub-matrices, where the top
(bottom) two sub-matrices are constructed from the odd (even)
rows of the dual-diagonal matrix. Thus, by putting the rows
of HJ−1 = [HJ−1,1 · · · HJ−1,L−2 I I(q − 1)] and
HJ = [HJ,1 · · · HJ,L−2 I I] into the odd and even rows
of H, respectively, the proposed matrix has a triangular plus
dual-diagonal form. Please note that a one in position (1, 4)
within I(3) is replaced by a zero to construct a dual-diagonal
matrix in Fig. 1(a). Fig. 1(b) shows an intuitive example of H,
where the four rows of H2 are put in rows 5, 7, 9, 11 and the
four rows of H3 are put into rows 6, 8, 10, 12 in H. Section
IV describes precisely how the rows of HJ−1 and HJ are
positioned in H.
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Fig. 1. (a) A dual-diagonal matrix composed of four sub-matrices; (b) the
proposed matrix in a triangle plus dual-diagonal form.

III. LOW ERROR FLOOR

Based on extensive numerical simulations, we have found
that both the degree distributions and the shifting coefficients
of H affect the error floor. The following approaches are
suggested to lower the error floors of irregular LDPC codes.

1) Degree distributions: The columns with large degrees
should be put into HS where no column of degree 2 or 1 is
allowed. Instead of the triangular form or the dual-diagonal
form, HP is given a triangular plus dual-diagonal form to
increase the minimum distance.

2) Shifting coefficient: The shifting coefficients are chosen
starting from the columns with low degrees to the columns
with high degrees, i.e. the coefficients for columns with
degrees 2 and 3 are chosen by avoiding short cycles and
cycles of medium length during the design procedure. Then
the coefficients for columns with degree above 3 are chosen
by avoiding short cycles.

As an example, consider irregular codes with a q value of
128, a block length of 2048, and a code rate of 1/2. The
matrix H = [HS|HP] shown in Fig. 2 has degree distributions
λ2 = 0.375, λ3 = 0.5, and λ8 = 0.125, where λi denotes
the fraction of columns with degree i in H. The shifting
coefficients for columns with degrees 2 and 3 were chosen
randomly from the rightmost column to the leftmost column
with the constraint which avoids cycles of length 4, 6, and 8.
Then, the coefficients for columns with degree 8 are chosen
by avoiding cycles of lengths 4 and 6. The bit error rate
(BER) of three irregular LDPC codes versus the signal-to-
noise ratio (SNR) per bit Eb/N0 are shown in Fig. 3, assuming
binary phase-shift keying (BPSK) modulation and an AWGN
channel. The iterative belief-propagation algorithm with a
maximum of 200 iterations was used for decoding. The so-
called triangular code in Fig. 3 is the irregular LDPC code
obtained by substituting a null sub-matrix for the sub-matrix
I(127) in position (7, 8) within HP, while the so-called dual-
diagonal code is the code obtained by substituting two null
sub-matrices for the sub-matrices I(21) in position (6, 1) and
I(10) in position (8, 2) within HP.

HS =

I(46)

I(112)

I
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Fig. 2. Parity-check matrix H = [HS|HP] of an irregular LDPC code.
Unmarked spaces are null sub-matrices.
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Fig. 3. BER comparison of three irregular codes with a code rate of 1/2 and
a block length of 2048. The regular code has a column degree of 4.

The proposed irregular codes clearly lower the error floor
and dramatically improve the performance in the waterfall
region of the BER curves. Though error floors at 10−6 and
10−7 are observed for the irregular codes with a triangular
matrix and a dual-diagonal matrix, respectively, the error floor
of the proposed irregular code is below 10−9. To estimate
the minimum distances of the codes which affect the error
floors, the following table lists the distances d1, d2, d3, and
d4, where di is the minimum weight of the codeword when
the weight of the systematic part is i. The minimum distances
of the irregular codes with a triangular matrix, a dual-diagonal
matrix, and the proposed matrix are upper-bounded at 13, 14
and 22, respectively.
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TABLE I

MINIMUM DISTANCES OF THREE IRREGULAR CODES

d1 d2 d3 d4 Minimum distance

Triangular 14 13 14 15 ≤ 13

Dual-diagonal 14 22 16 22 ≤ 14

Proposed 25 24 23 22 ≤ 22

For comparison purposes, the BER performance of a regular
LDPC code with a column degree of 4, a row degree of 8, a
block length of 2048 and a code rate of 1/2 is also shown in
Fig. 3. Though the regular code has good performance in the
error floor region, it exhibits a 0.2 dB loss with respect to the
proposed irregular code.

IV. LINEAR ENCODING

Since LDPC codes are linear codes, x is a codeword if and
only if

H xT = 0T (4)

Consider a partitioning of x into (J + 1) parts, i.e. x =
(u,p1, · · · ,pJ ), where u denotes the systematic part and
(p1, · · · ,pJ ) denote the parity parts. Since H has a trian-
gular plus dual-diagonal form, the above equation is naturally
broken down as follows:

pj(i) =
L−J∑
k=1

gj,k u(aj,k,i) +
j−1∑
k=1

gj,k pk(bj, L−J+k, i), (5)

pJ−1(i) = v(i) + pJ−1(i − 1), (6)

pJ(i) = v(i + q) + pJ(i − 1), (7)

for all i, 1 ≤ i ≤ q, and for all j, 1 ≤ j ≤ J − 2, where
pJ−1(0) = 0 and pJ(0) = pJ−1(q), and the intermediate
vector v is given by

v(2i − 1) =
L−J∑
k=1

gJ−1,k u(aJ−1,k,i)

+
J−2∑
k=1

gJ−1,k pk(bJ−1, L−J+k, i), (8)

v(2i) =
L−J∑
k=1

gJ,k u(aJ,k,i)

+
J−2∑
k=1

gJ,k pk(bJ, L−J+k, i), (9)

The indices aj,k,i of vector u and the indices bj,L−J+k,i of
vector pk are defined as:

aj,k,i = [i + Cj,k]q + (k − 1) × q, (10)

bj,L+J+k,i = [i + Cj,L−J+k]q + (k − 1) × q, (11)

where [x]q denotes x modulo-q arithmetic. The coefficients
gj,k in (5), (8), and (9) are defined as:

gj,k =
{

1, when Hj,k = I(Cj,k),
0, when Hj,k = 0,

(12)

for all j, 1 ≤ j ≤ J , and for all k, 1 ≤ k ≤ L − 2.
We implemented an encoder for the proposed LDPC code

with a q value of 128, a block length of 2048, and a code rate
of 1/2 into Xilinx Virtex-II Field Programmable Gate Array
(FPGA) devices. The systematic bits u and the parity bits
(p1, · · · ,p8) were stored into the Random Access Memory
(RAM) buffers. The indices a in (10) and b in (11) which
generated the RAM addresses were easily calculated by the 7-
bit accumulators, where q = 27 = 128. By using an encoding
clock frequency of 100 MHz and 912 XOR gates for the
additions in (5)-(9), the encoder attained a throughput of 12.8
Gigabit/s.

V. CONCLUSION

This letter has proposed an efficient approach for designing
high-performance irregular LDPC codes with low error floor
and low encoding complexity. By using techniques such as
dual-diagonal matrix decomposition, degree distribution opti-
mization, careful selection of shifting coefficients, and fast es-
timation of minimum distances, the proposed solutions lower
dramatically the BER floor down to 10−9. These techniques
are applicable for irregular LDPC codes with arbitrary block
length and arbitrary code rate.
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